The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in ...The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).展开更多
The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key managemen...The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.展开更多
A novel encryption model is proposed. It combines encryption process with compression process, and realizes compression and encryption at the same time. The model's feasibility and security are analyzed in detail. An...A novel encryption model is proposed. It combines encryption process with compression process, and realizes compression and encryption at the same time. The model's feasibility and security are analyzed in detail. And the relationship between its security and compression ratio is also analyzed.展开更多
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).
基金Project(61100201) supported by National Natural Science Foundation of ChinaProject(12ZZ019) supported by Technology Innovation Research Program,Shang Municipal Education Commission,China+1 种基金Project(LYM11053) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province,ChinaProject(NCET-12-0358) supported by New Century Excellent Talentsin University,Ministry of Education,China
文摘The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.
基金supported by the National Natural Science Foundation of China(60903197)the Major State Basic Research Development Program of China(2007CB310800)+1 种基金the Major Research Plan of the National Natural Science Foundation of China (90718006)the Foundation of Key Laboratory of Aerospace Information Security and Trust Computing Ministry of Education.
文摘A novel encryption model is proposed. It combines encryption process with compression process, and realizes compression and encryption at the same time. The model's feasibility and security are analyzed in detail. And the relationship between its security and compression ratio is also analyzed.