The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi...The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.展开更多
Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality dat...Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.展开更多
This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employi...This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.展开更多
基金Project(51171209)supported by the National Natural Science Foundation of China
文摘The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.
基金Project (2012ZX07501002-001) supported by the Ministry of Science and Technology of China
文摘Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.
基金supported by the National Natural Science Foundation of China (6057408860274014)
文摘This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.