Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie...Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.展开更多
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is...The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.展开更多
Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk...Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.展开更多
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich...A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.展开更多
针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地...针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。展开更多
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.
基金supported by the Aviation Science Foundation of China(20105196016)the Postdoctoral Science Foundation of China(2012M521807)
文摘The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.
文摘Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.
基金Projects(6177021519,61503373)supported by National Natural Science Foundation of ChinaProject(N161705001)supported by Fundamental Research Funds for the Central University,China
文摘A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.
文摘针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。