To solve the seam tracking problem of mobile welding robot,a new controller based on the dynamics of mobile welding robot was designed using the method of backstepping kinematics into dynamics.A self-turning fuzzy con...To solve the seam tracking problem of mobile welding robot,a new controller based on the dynamics of mobile welding robot was designed using the method of backstepping kinematics into dynamics.A self-turning fuzzy controller and a fuzzy-Gaussian neural network(FGNN) controller were designed to complete coordinately controlling of cross-slider and wheels.The fuzzy-neural control algorithm was described by applying the Gaussian function and back propagation(BP) learning rule was used to tune the membership function in real time by applying the FGNN controller.To make the tracking more quickly and smoothly,the neural network controller based on dynamic model was designed,which utilized self-learning and self-adaptive ability of the neural network to deal with the partial uncertainty and the disturbances of the parameters of the robot dynamic model and real-time compensate the dynamics coupling.The results show that the selected control input torques make the system globally and asymptotically stable based on the Lyapunov function selected out;the accuracy of the proposed controller tracing is within ±0.4 mm and can satisfy the requirements of practical welding project.展开更多
Based on the Newton-Euler method, the dynamic behaviors of the left and right driving wheels and the robot body for the welding mobile robot were derived. In order to realize the combination control of body turning an...Based on the Newton-Euler method, the dynamic behaviors of the left and right driving wheels and the robot body for the welding mobile robot were derived. In order to realize the combination control of body turning and slider adjustment, the dynamic behaviors of sliders were also investigated. As a result, a systematic and complete dynamic model for the welding mobile robot was constructed. In order to verify the effectiveness of the above model, a sliding mode tracking control method was proposed and simulated, the lateral error stabilizes between -0.2 mm and +0.2 mm, and the total distance of travel for the slider is consistently within 4-2 ram. The simulation results verify the effectiveness of the established dynamic model and also show that the seam tracking controller based on the dynamic model has excellent performance in terms of stability and robustness. Furthermore, the model is found to be very suitable for practical applications of the welding mobile robot.展开更多
A novel hybrid visual servoing control method based on structured light vision is pro-posed for robotic arc welding with a general six degrees of freedom robot. It consists of a positioncontrol inner-loop in Cartesian...A novel hybrid visual servoing control method based on structured light vision is pro-posed for robotic arc welding with a general six degrees of freedom robot. It consists of a positioncontrol inner-loop in Cartesian space and two outer-loops. One is position-based visual control inCartesian space for moving in the direction of weld seam, i.e., weld seam tracking, another is image-based visual control in image space for adjustment to eliminate the errors in the process of tracking.A new Jacobian matrix from image space of the feature point on structured light stripe to Cartesianspace is provided for dierential movement of the end-e?ector. The control system model is simplifiedand its stability is discussed. An experiment of arc welding protected by gas CO2 for verifying iswell conducted.展开更多
智能化焊接在推进“工业强基”工程、支撑国家建设及国防安全中起到重要作用,从重大装备到精细结构,焊接都是不可或缺的关键技术,而机器人作为智能化焊接的重要载体,推动“以机器代替人,以机器解放人”的过程中将发挥重要作用.文中从焊...智能化焊接在推进“工业强基”工程、支撑国家建设及国防安全中起到重要作用,从重大装备到精细结构,焊接都是不可或缺的关键技术,而机器人作为智能化焊接的重要载体,推动“以机器代替人,以机器解放人”的过程中将发挥重要作用.文中从焊接制造全流程的场景建模、焊接过程形性原位感知、自适应调控、工艺知识构建等关键技术出发,重点阐述了焊接机器人的“免示教”编程环境感知、点云配准、焊缝轨迹规划和焊道自适应编排等共性技术的研究现状,以智能化焊接制造过程多源信息监测及控制系统为例,提出了基于IIOT-MAS(industrial internet of things-multi-agent system)焊接制造系统分层结构模型,介绍了焊接多模态信息感知、融合及工艺知识建模等共性科学问题,并介绍了工程机械部件焊接现场感知数据在线学习和模型-数据双驱动的焊接质量评价模型典型案例,探讨了机器人焊接智能化的发展趋势和所面临的挑战.展开更多
基金Project(2007309) supported by the Scientific Research Project of Hebei Provincial Education Office,ChinaProject(2007AA04Z209) supported by the National High-Tech Research and Development Program of China
文摘To solve the seam tracking problem of mobile welding robot,a new controller based on the dynamics of mobile welding robot was designed using the method of backstepping kinematics into dynamics.A self-turning fuzzy controller and a fuzzy-Gaussian neural network(FGNN) controller were designed to complete coordinately controlling of cross-slider and wheels.The fuzzy-neural control algorithm was described by applying the Gaussian function and back propagation(BP) learning rule was used to tune the membership function in real time by applying the FGNN controller.To make the tracking more quickly and smoothly,the neural network controller based on dynamic model was designed,which utilized self-learning and self-adaptive ability of the neural network to deal with the partial uncertainty and the disturbances of the parameters of the robot dynamic model and real-time compensate the dynamics coupling.The results show that the selected control input torques make the system globally and asymptotically stable based on the Lyapunov function selected out;the accuracy of the proposed controller tracing is within ±0.4 mm and can satisfy the requirements of practical welding project.
基金Project(50605044) supported by the National Natural Science Foundation of China Project(2004DFA02400) supported by the Key International Science and Technology Cooperation Program
文摘Based on the Newton-Euler method, the dynamic behaviors of the left and right driving wheels and the robot body for the welding mobile robot were derived. In order to realize the combination control of body turning and slider adjustment, the dynamic behaviors of sliders were also investigated. As a result, a systematic and complete dynamic model for the welding mobile robot was constructed. In order to verify the effectiveness of the above model, a sliding mode tracking control method was proposed and simulated, the lateral error stabilizes between -0.2 mm and +0.2 mm, and the total distance of travel for the slider is consistently within 4-2 ram. The simulation results verify the effectiveness of the established dynamic model and also show that the seam tracking controller based on the dynamic model has excellent performance in terms of stability and robustness. Furthermore, the model is found to be very suitable for practical applications of the welding mobile robot.
文摘A novel hybrid visual servoing control method based on structured light vision is pro-posed for robotic arc welding with a general six degrees of freedom robot. It consists of a positioncontrol inner-loop in Cartesian space and two outer-loops. One is position-based visual control inCartesian space for moving in the direction of weld seam, i.e., weld seam tracking, another is image-based visual control in image space for adjustment to eliminate the errors in the process of tracking.A new Jacobian matrix from image space of the feature point on structured light stripe to Cartesianspace is provided for dierential movement of the end-e?ector. The control system model is simplifiedand its stability is discussed. An experiment of arc welding protected by gas CO2 for verifying iswell conducted.
文摘智能化焊接在推进“工业强基”工程、支撑国家建设及国防安全中起到重要作用,从重大装备到精细结构,焊接都是不可或缺的关键技术,而机器人作为智能化焊接的重要载体,推动“以机器代替人,以机器解放人”的过程中将发挥重要作用.文中从焊接制造全流程的场景建模、焊接过程形性原位感知、自适应调控、工艺知识构建等关键技术出发,重点阐述了焊接机器人的“免示教”编程环境感知、点云配准、焊缝轨迹规划和焊道自适应编排等共性技术的研究现状,以智能化焊接制造过程多源信息监测及控制系统为例,提出了基于IIOT-MAS(industrial internet of things-multi-agent system)焊接制造系统分层结构模型,介绍了焊接多模态信息感知、融合及工艺知识建模等共性科学问题,并介绍了工程机械部件焊接现场感知数据在线学习和模型-数据双驱动的焊接质量评价模型典型案例,探讨了机器人焊接智能化的发展趋势和所面临的挑战.