Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invas...Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant.展开更多
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.
基金supported by the National Natural Science Foundation of China (No. 51973172)Natural Science Foundation of Shaanxi Province (Nos. 2020JC-03 and 2019TD-020)+2 种基金the State Key Laboratory for Mechanical Behavior of Materials,the World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central UniversitiesFundamental Research Funds for the Central Universitiesthe Opening Project of the Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research,College of Stomatology,Xi’an Jiaotong University (No. 2019LHM-KFKT008).
文摘Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant.