接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响...接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。展开更多
目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词...目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。展开更多
文摘接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。
文摘目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。