A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm a...A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.展开更多
A genetic-optimization framework based on the partial cooperation communication protocol is proposed for scalable video coding (SVC) stream transmission under multi-relay amplify and forward cooperative networks. Unli...A genetic-optimization framework based on the partial cooperation communication protocol is proposed for scalable video coding (SVC) stream transmission under multi-relay amplify and forward cooperative networks. Unlike traditional cooperative transmission schemes, the transmission mode for each coded unit in this new protocol can be switched flexibly between direct transmission and cooperative transmission. Obviously, under this protocol, the bandwidth efficiency and transmission robustness can be balanced adaptively according to the priority level of coded units and wireless channel fading characteristics. Based on this, a well-known genetic optimization algorithm-differential evolution is exploited here to find the jointly optimal transmission modes, power allocation and unequal error protection (UEP) channel coding strategies to minimize the end to end reconstructed video distortion. Extensive simulation results show that, compared with classical optimal cooperative UEP transmission schemes, the proposed optimized transmission framework based on the partial cooperative protocol can bring significant peak-signal-to-noise-ratio (PSNR) gains for the reconstructed video in a variety of channel bandwidth, power budget and test sequences.展开更多
文摘A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20160147)
文摘A genetic-optimization framework based on the partial cooperation communication protocol is proposed for scalable video coding (SVC) stream transmission under multi-relay amplify and forward cooperative networks. Unlike traditional cooperative transmission schemes, the transmission mode for each coded unit in this new protocol can be switched flexibly between direct transmission and cooperative transmission. Obviously, under this protocol, the bandwidth efficiency and transmission robustness can be balanced adaptively according to the priority level of coded units and wireless channel fading characteristics. Based on this, a well-known genetic optimization algorithm-differential evolution is exploited here to find the jointly optimal transmission modes, power allocation and unequal error protection (UEP) channel coding strategies to minimize the end to end reconstructed video distortion. Extensive simulation results show that, compared with classical optimal cooperative UEP transmission schemes, the proposed optimized transmission framework based on the partial cooperative protocol can bring significant peak-signal-to-noise-ratio (PSNR) gains for the reconstructed video in a variety of channel bandwidth, power budget and test sequences.