This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm ar...This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.展开更多
Small video satellites have unique advantages of short development cycle,agile attitude maneuver,real-time video imaging.They have broad application prospects in space debris,faulty spacecraft,and other space target d...Small video satellites have unique advantages of short development cycle,agile attitude maneuver,real-time video imaging.They have broad application prospects in space debris,faulty spacecraft,and other space target detection and tracking.However,when a space target first enters the camera’s visual field,it has a relatively large angular velocity relative to the satellite,which makes it easy to deviate from the visual field and cause off-target problems.This paper proposes a novel visual tracking control method based on potential function preventing missed targets in space.Firstly,a circular area in the image plane is designed as a mandatory restricted projection area of the target and a visual tracking controller based on image error.Then,a potential function is designed to ensure continuous and stable tracking of the target after entering the visual field.Finally,the stability of the control is proved using Barbarat’s lemma.By setting the same conditions and comparing with the simulation results of the proportion-derivative(PD)control method,the results show that when there is a large relative attitude motion angular velocity between the target and the satellite,the track-ing method based on potential function can ensure that the tar-get does not deviate from the field-of-view during the tracking control process,and the projection of target is controlled to the desired position.The proposed control method is effective in eliminating tracking error and preventing off-target simultane-ously.展开更多
This paper investigates the integrated fault detection and diagnosis(FDD) with fault tolerant control(FTC) method of the control system with recoverable faults.Firstly,a quasi-linear parameter-varying(QLPV) mode...This paper investigates the integrated fault detection and diagnosis(FDD) with fault tolerant control(FTC) method of the control system with recoverable faults.Firstly,a quasi-linear parameter-varying(QLPV) model is set up,in which effectiveness factors are modeled as time-varying parameters to quantify actuators and sensors faults.Based on the certainty equivalency principle,replacing the real time states in the nonlinear term of the QLPV model with the estimated states,the parameters and states can be estimated by a two-stage Kalman filtering algorithm.Then,a polynomial eigenstructure assignment(PEA) controller with time-varying parameters and states is designed to guarantee the performance of the system with recoverable faults.Finally,mathematical simulation is performed to validate the solution in a satellite closed-loop attitude control system,and simulation results show that the solution is fast and effective for on-orbit real-time computation.展开更多
基金supported by the National Natural Science Foundation of China (61034005)the Natural Science Foundation of Jiangsu Province (BK2010072)
文摘This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.
文摘Small video satellites have unique advantages of short development cycle,agile attitude maneuver,real-time video imaging.They have broad application prospects in space debris,faulty spacecraft,and other space target detection and tracking.However,when a space target first enters the camera’s visual field,it has a relatively large angular velocity relative to the satellite,which makes it easy to deviate from the visual field and cause off-target problems.This paper proposes a novel visual tracking control method based on potential function preventing missed targets in space.Firstly,a circular area in the image plane is designed as a mandatory restricted projection area of the target and a visual tracking controller based on image error.Then,a potential function is designed to ensure continuous and stable tracking of the target after entering the visual field.Finally,the stability of the control is proved using Barbarat’s lemma.By setting the same conditions and comparing with the simulation results of the proportion-derivative(PD)control method,the results show that when there is a large relative attitude motion angular velocity between the target and the satellite,the track-ing method based on potential function can ensure that the tar-get does not deviate from the field-of-view during the tracking control process,and the projection of target is controlled to the desired position.The proposed control method is effective in eliminating tracking error and preventing off-target simultane-ously.
基金supported by the National Natural Science Foundation of China (60904051)China Postdoctoral Science Foundation(20090450126)+1 种基金the Doctoral New Teacher Fund of Ministry of Education of China (20092302120067)the Open Fund for National Defense Key Subject Laboratory of Small Spacecraft Technology (HIT.KLOF.2009096)
文摘This paper investigates the integrated fault detection and diagnosis(FDD) with fault tolerant control(FTC) method of the control system with recoverable faults.Firstly,a quasi-linear parameter-varying(QLPV) model is set up,in which effectiveness factors are modeled as time-varying parameters to quantify actuators and sensors faults.Based on the certainty equivalency principle,replacing the real time states in the nonlinear term of the QLPV model with the estimated states,the parameters and states can be estimated by a two-stage Kalman filtering algorithm.Then,a polynomial eigenstructure assignment(PEA) controller with time-varying parameters and states is designed to guarantee the performance of the system with recoverable faults.Finally,mathematical simulation is performed to validate the solution in a satellite closed-loop attitude control system,and simulation results show that the solution is fast and effective for on-orbit real-time computation.