Essential oil, with more than thirty kinds of compounds separated and identified by gas chromatography-mass spectrometry, was extracted from Shatian shaddock peel and Sweet shaddock peel by squeeze-steam distillation ...Essential oil, with more than thirty kinds of compounds separated and identified by gas chromatography-mass spectrometry, was extracted from Shatian shaddock peel and Sweet shaddock peel by squeeze-steam distillation and direct steam distillation method. Among their composition, the main components are terpene compounds, which account for 93.926% (mass fraction, the same below) and 85.843% of essential oils extracted from Shatian shaddock peel and Sweet shaddock peel, respectively. Although nootkatone is the major contributor of shaddock characteristic scent, and its contents are 1.069% and 1.749% of essential oils from Sweet shaddock peel and Shatian shaddock peel, respectively. The results show that squeeze-steam distillation gives higher yield and good quality of essential oil and the compositions of essential oils from two kinds of shaddock peels are different, but the main contributors of the shaddock scent are the same.展开更多
This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-B...This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.展开更多
建立了一种可用于水产品及食用油中氟乐灵残留量分析的分散型固相萃取-气相色谱-负化学离子源质谱方法。水产品及食用油经乙腈提取,4℃冷藏后,采用分散型固相萃取法净化,由气相色谱-负化学离子源质谱选择离子监测技术进行测定与确证...建立了一种可用于水产品及食用油中氟乐灵残留量分析的分散型固相萃取-气相色谱-负化学离子源质谱方法。水产品及食用油经乙腈提取,4℃冷藏后,采用分散型固相萃取法净化,由气相色谱-负化学离子源质谱选择离子监测技术进行测定与确证,同位素内标法定量。在1~40μg / L 范围内氟乐灵农药的线性关系良好;方法定量限(LOQ)为0.02μg / kg;对鳗鱼、烤鳗、梭子蟹、小龙虾、猪油和橄榄油等6种复杂基质进行1.0、2.0和3.0μg / kg 等3个水平的添加回收试验,平均回收率均处于80%~100%之间,RSD≤10.3%;无干扰现象出现。该方法可作为水产品及食用油中氟乐灵残留检测的确证方法。展开更多
文摘Essential oil, with more than thirty kinds of compounds separated and identified by gas chromatography-mass spectrometry, was extracted from Shatian shaddock peel and Sweet shaddock peel by squeeze-steam distillation and direct steam distillation method. Among their composition, the main components are terpene compounds, which account for 93.926% (mass fraction, the same below) and 85.843% of essential oils extracted from Shatian shaddock peel and Sweet shaddock peel, respectively. Although nootkatone is the major contributor of shaddock characteristic scent, and its contents are 1.069% and 1.749% of essential oils from Sweet shaddock peel and Shatian shaddock peel, respectively. The results show that squeeze-steam distillation gives higher yield and good quality of essential oil and the compositions of essential oils from two kinds of shaddock peels are different, but the main contributors of the shaddock scent are the same.
基金Projects(52034002,U1802253)supported by the National Natural Science Foundation of ChinaProject(2019YFC1908401)supported by the National Technology Support Project of China。
文摘This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.
文摘建立了一种可用于水产品及食用油中氟乐灵残留量分析的分散型固相萃取-气相色谱-负化学离子源质谱方法。水产品及食用油经乙腈提取,4℃冷藏后,采用分散型固相萃取法净化,由气相色谱-负化学离子源质谱选择离子监测技术进行测定与确证,同位素内标法定量。在1~40μg / L 范围内氟乐灵农药的线性关系良好;方法定量限(LOQ)为0.02μg / kg;对鳗鱼、烤鳗、梭子蟹、小龙虾、猪油和橄榄油等6种复杂基质进行1.0、2.0和3.0μg / kg 等3个水平的添加回收试验,平均回收率均处于80%~100%之间,RSD≤10.3%;无干扰现象出现。该方法可作为水产品及食用油中氟乐灵残留检测的确证方法。