Fasciclin-like arabinogalactan proteins(FLAs),a subclass of arabinogalactan proteins(AGPs),are usually involved in cell development in plants.To investigate the expression profiling as well
To explore the germination mechanism of salt-stressed rice improved by exogenous proline, and provide a theoretical basis to rice direct sowing technology for salinized soil, the effects of soaking with proline on ger...To explore the germination mechanism of salt-stressed rice improved by exogenous proline, and provide a theoretical basis to rice direct sowing technology for salinized soil, the effects of soaking with proline on germination status, amylase activity and isoenzyme were studied in this paper. The results showed that germination status including germination energy(GE), germination rate(GR), relative germination energy(RGE) and relative germination rate(RGR) significantly decreased as the same as the activities of alpha-amylase, beta-amylase and the total amylase under salt stress. Soaking with exogenous proline improved the germination status of rice under salt stress. Moreover, GE and RGE of salt-stressed rice were improved with increasing of proline concentration at the range of 5-45 mmol ·L-1. Soaking with 15 mmol ·L-1 and 30 mmol ·L-1 proline significantly improved the amylase activities(e.g. alpha-amylase, beta-amylase and total amylase) of rice under salt stress. Salt stress inhibited the express of beta-amylase isoenzyme temporarily, but had few impacts on alpha-amylase isozyme. Soaking with 30 mmol ·L-1 proline brightened District I and increased the width of 'i' brand in District II of alpha-amylase isoenzyme, but had few impacts on beta-amylase isoenzyme. In a word, soaking with proline could effectively alleviate the inhibitory effects of salt stress on seed germination.展开更多
Experiments were conducted to study the effects of selenium (Se) on glutathione peroxidase(GSH-Px) activity and the accumulation of malonaldehyde(MDA),the product of lipid peroxidation in soybean seedling, as well as ...Experiments were conducted to study the effects of selenium (Se) on glutathione peroxidase(GSH-Px) activity and the accumulation of malonaldehyde(MDA),the product of lipid peroxidation in soybean seedling, as well as the effect of Se on cell ultra structure of soybean leaf and nascent root under salt stress. Results showed that appropriate amount of Se addition increased GSH-Px activity in soybean leaves from 0. 810 to 1. 421μmol·g-1 fresh weight·min-1 F = 9.12, and reduced the concentration of MDA from 20.17 to 16.16 μmol·g-1 fresh weight, F = 5.44. Under salt stress,no obvious damage on chloplast membrane was observed in Se treated seedlings,and the structures of chloplast and mitochondrion were integrate,whereas in control (no Se addition),the cell membrane was destroyed seriously,chloplast degraded and mitochondrion disappeared. Compared with control,Se addition increased the dry matter weight of seedling by 2.92% to 21.86%, F =5.97.展开更多
The aims were to investigate the effect of salt stress on key enzyme activity of nitrogen metabolism and the concentration of nitrate nitrogen and ammonium nitrogen response to salt stress.Two rice cultivars,Mudanjian...The aims were to investigate the effect of salt stress on key enzyme activity of nitrogen metabolism and the concentration of nitrate nitrogen and ammonium nitrogen response to salt stress.Two rice cultivars,Mudanjiang 30(sensitive cultivar)and Longdao 5(salt-tolerant cultivar),were treated with different salt concentrations(CK 0%,S10.075%,S20.15%,S30.225%and S40.3%).The results showed that the activities of nitrate reductase(NR),glutamine synthase(GS),glutamate synthase(GOGAT)and glutamate dehydrogenase(GDH)in the functional leaves and roots of rice in cold region presented a single peak curve change and the peak occurred in the heading stage;compared with those of the CK,the activities of NR,GS and GOGAT of rice in cold region decreased,but the activity of GDH increased in the heading stage under salt stress.The variation for key enzyme activity of nitrogen metabolism was the highest under S4 treatment.The activities of NR,GS and GOGAT in the functional leaves significantly decreased compared with those in roots;the concentrations of nitrate nitrogen and ammonium nitrogen in the functional leaves and roots of rice in cold region presented a single peak curve change and the peak occurred in the heading stage;compared with that of the CK,the concentration of nitrate nitrogen decreased in leaves and roots,the concentration of ammonium nitrogen decreased and the concentration of ammonium nitrogen in roots increased under salt stress.The variations for the activities of NR,GS and GOGAT in the functional leaves and roots of Longdao 5 were less than those of Mudanjiang 30 under the same concentration of salt stress.展开更多
Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted enviro...Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted environmental stresses are becoming significant threats to sustainable cotton production,ultimately leading to a substantial irreversible economic loss.Mitogen-activated protein kinase(MAPK)is generally considered essential for recognizing environmental stresses through phosphorylating downstream signal pathways and plays a vital role in numerous biological processes.Results:We have identified 74 MAPK genes across cotton,41 from G.hirsutum,19 from G.raimondii,whereas 14 have been identified from G.arboreum.The MAPK gene-proteins have been further studied to determine their physicochemical characteristics and other essential features.In this perspective,characterization,phylogenetic relationship,chromosomal mapping,gene motif,cis-regulatory element,and subcellular localization were carried out.Based on phylogenetic analysis,the MAPK family in cotton is usually categorized as A,B,C,D,and E clade.According to the results of the phylogenic relationship,cotton has more MAPKS genes in Clade A than Clade B.The cis-elements identified were classified into five groups(hormone responsiveness,light responsiveness,stress responsiveness,cellular development,and binding site).The prevalence of such elements across the promoter region of these genes signifies their role in the growth and development of plants.Seven GHMAPK genes(GH_A07G1527,GH_D02G1138,GH_D03G0121,GH_D03G1517,GH_D05G1003,GH_D11G0040,and GH_D12G2528)were selected,and specific tissue expression and profiling were performed across drought and salt stresses.Results expressed that six genes were upregulated under drought treatment except for GH_D11G0040 which is downregulated.Whereas all the seven genes have been upregulated at various hours of salt stress treatment.Conclusions:RNA sequence and qPCR results showed that genes as differentially expressed across both vegetative and reproductive plant parts.Similarly,the qPCR analysis showed that six genes had been upregulated substantially through drought treatment while all the seven genes were upregulated across salt treatments.The results of this study showed that cotton GHMPK3 genes play an important role in improving cotton resistance to drought and salt stresses.MAPKs are thought to play a significant regulatory function in plants’responses to abiotic stresses according to various studies.MAPKs’involvement in abiotic stress signaling and innovation is a key goal for crop species research,especially in crop breeding.展开更多
DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was report...DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was reported that 6.5% of the whole cytosine residues in the nuclear DNA in展开更多
Background:Soil salt stress seriously restricts the yield and quality of cotton worldwide.To investigate the molecular mechanism of cotton response to salt stress,a main cultivated variety Gossypium hirsutum L.acc.Xin...Background:Soil salt stress seriously restricts the yield and quality of cotton worldwide.To investigate the molecular mechanism of cotton response to salt stress,a main cultivated variety Gossypium hirsutum L.acc.Xinluzhong 54 was used to perform transcriptome and proteome integrated analysis.Results:Through transcriptome analysis in cotton leaves under salt stress for 0 h(T0),3 h(T3)and 12 h(T12),we identified 8436,11628 and 6311 differentially expressed genes(DEGs)in T3 vs.T0,T12 vs.T0 and T12 vs.T3,respectively.A total of 459 differentially expressed proteins(DEPs)were identified by proteomic analysis,of which 273,99 and 260 DEPs were identified in T3 vs.T0,T12 vs.T0 and T12 vs.T3,respectively.Metabolic pathways,biosynthesis of secondary metabolites,photosynthesis and plant hormone signal transduction were enriched among the identified DEGs or DEPs.Detail analysis of the DEGs or DEPs revealed that complex signaling pathways,such as abscisic acid(ABA)and jasmonic acid(JA)signaling,calcium signaling,mitogen-activated protein kinase(MAPK)signaling cascade,transcription factors,activation of antioxidant and ion transporters,were participated in regulating salt response in cotton.Conclusions:Our research not only contributed to understand the mechanism of cotton response to salt stress,but also identified nine candidate genes,which might be useful for molecular breeding to improve salt-toleranee in cotton.展开更多
Background:Cotton(Gossypium hirsutum) provides the largest natural fiber for the textile manufacturing industries,but its production is on the decline due to the effects of salinity.Soil salt-alkalization leads to dam...Background:Cotton(Gossypium hirsutum) provides the largest natural fiber for the textile manufacturing industries,but its production is on the decline due to the effects of salinity.Soil salt-alkalization leads to damage in cotton growth and a decrease in yields.Hyperosmolality-gated calcium-permeable channels(OSCA) have been found to be involved in the detection of extracellular changes which trigger an increase in cytosolic free calcium concentration.Hyperosmolality-induced calcium ion increases have been widely speculated to be playing a role in osmosensing in plants.However,the molecular nature of the corresponding calcium ion channels remains unclearly.In this research work,we describe the OSCA genes and their putative function in osmosensing in plants by carrying out genomewide identification,characterization and functional analysis of the significantly up-regulated OSCA gene,GhOSCA1.1 through reverse genetics.Result:A total of 35,21 and 22 OSCA genes were identified in G.hirsutum,G.arboreum,and G.raimondii genomes,respectively,and were classified into four different clades according to their gene structure and phylogenetic relationship.Gene and protein structure analysis indicated that 35 GhOSCA genes contained a conserved RSN17 TM(PF02714) domain.Moreover,the cis-regulatory element analysis indicated that the OSCA genes were involved in response to abiotic stress.Furthermore,the knockdown of one of the highly up-regulated genes,GhOSCA1.1 showed that the virus-induced gene silenced(VIGS) plants were highly sensitive to dehydration and salinity stresses compared with the none VIGS plants as evident with higher concentration levels of oxidant enzymes compared with the antioxidant enzymes on the leaves of the stressed plants.Conclusion:This study provides the first systematic analysis of the OSCA gene family and will be important for understanding the putative functions of the proteins encoded by the OSCA genes in cotton.These results provide a new insight of defense responses in general and lay the foundation for further investigation of the molecular role played by the OSCA genes,thereby providing suitable approaches to improve crop performance under salinity and drought stress conditions.展开更多
In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including ...In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time.展开更多
Background: Nucleobase-ascorbate transporters(NAT), synonymously called nucleobase-cation symporter 2(NCS2) proteins, were earlier reported to be involved in plant growth, development and resistance to stress. Previou...Background: Nucleobase-ascorbate transporters(NAT), synonymously called nucleobase-cation symporter 2(NCS2) proteins, were earlier reported to be involved in plant growth, development and resistance to stress. Previous studies concluded that s a polymorphic SNP associated with NAT12 was significant di erent between salt-tolerant and salt-sensitive materials of upland cotton. In current study, a comprehensive analysis of NAT family genes was conducted for the first time in cotton.Results: In this study, we discovered 32, 32, 18, and 16 NAT genes in Gossypium hirsutum, G. barbadense, G. raimondii and G. arboreum, respectively, which were classified into four groups(groups I–IV) based on the multiple sequence analysis. These GhNAT genes were unevenly distributed on At and Dt sub-genome in G. hirsutum. Most GhNAT members in the same group had similar gene structure characteristics and motif composition. The collinearity analysis revealed segmental duplication as well as tandem duplication contributing to the expansion of the GhNATs. The analysis of cis-acting regulatory elements of GhNATs showed that the function of GhNAT genes in cotton might be related to plant hormone and stress response. Under di erent conditions, the expression levels further suggested the GhNAT family genes were associated with plant response to various abiotic stresses. GhNAT12 was detected in the plasma membrane. And it was validated that the GhNAT12 gene played an important role in regulating cotton resistance to salt and drought stress through the virus-induced gene silencing(VIGS) analysis.Conclusions: A comprehensive analysis of NAT gene family was performed in cotton, including phylogenetic analysis, chromosomal location, collinearity analysis, motifs, gene structure and so on. Our results will further broaden the insight into the evolution and potential functions of NAT genes in cotton. Current findings could make significant contribution towards screening more candidate genes related to biotic and abiotic resistance for the improvement in cotton.展开更多
Many plants accumulate compatible solutes in response to the imposition of environmental stresses.Glycine betaine, which is one of compatible solutes in cell of plants,has been shown to have surviving ability for plan...Many plants accumulate compatible solutes in response to the imposition of environmental stresses.Glycine betaine, which is one of compatible solutes in cell of plants,has been shown to have surviving ability for plant from salt stress.Effect of glycine betaine on improving plant salt resistance was discussed in plants under salt stress.The accumulation of glycine betaine protects plants against the damaging effects of stress.Strategies of glycine betaine against the damaging effects of stress were analyzed to clarify the roles of glycine betaine in salt stress tolerance of plants.展开更多
Growth and osmotic response of Lactobacillus bulgaricus ATCC 11842 under hyperosmotic constraint were investigated in a chemically defined medium (CDM) and MRS medium. NaCl could inhibit the growth of L. bulgaricus ...Growth and osmotic response of Lactobacillus bulgaricus ATCC 11842 under hyperosmotic constraint were investigated in a chemically defined medium (CDM) and MRS medium. NaCl could inhibit the growth of L. bulgaricus which decreased with increasing NaCl concentration. In the MRS, NaCl of 1.0 mol·L-1 was the biggest salt stress concentration; in the CDM, 0.8 mol·L-1 was the biggest inhibition concentration. In contrast to what was observed in other lactic acid bacteria, proline, glycine betaine and related molecules were unable to relieve inhibition of growth of L. bulgaricus under osmotic constraint. This was correlated to the absence of sequences homologous to the genes coding for glycine-betaine and/or proline transporters described in Lactococcus lactis and Bacillus subtilis. The amino acid aspartate and alanine were proved to be osmoprotective under NaCl stress. Addition of peptone (0.25% w/v) in the presence of salt led to a stimulation of the growth, as the decrease of the lag time and generation time, and the final biomass increased from 0.31 to 0.64.展开更多
Background:Salt stress significantly inhibits the growth,development,and productivity of cotton because of osmotic,ionic,and oxidative stresses.Therefore,the screening and development of salt tolerant cotton cultivars...Background:Salt stress significantly inhibits the growth,development,and productivity of cotton because of osmotic,ionic,and oxidative stresses.Therefore,the screening and development of salt tolerant cotton cultivars is a key issue towards sustainable agriculture.This study subjected 11 upland cotton genotypes at the seedling growth stage to five different salt concentrations and evaluated their salt tolerance and reliable traits.Results:Several morpho-physiological traits were measured after 10 days of salinity treatment and the salt tolerance performance varied significantly among the tested cotton genotypes.The optimal Na Cl concentration for the evaluation of salt tolerance was 200 mmol·L-1.Membership function value and salt tolerance index were used to identify the most consistent salt tolerance traits.Leaf relative water content and photosynthesis were identified as reliable indicators for salt tolerance at the seedling stage.All considered traits related to salt tolerance indices were significantly and positively correlated with each other except for malondialdehyde.Cluster heat map analysis based on the morpho-physiological salt tolerance-indices clearly discriminated the 11 cotton genotypes into three different salt tolerance clusters.Cluster I represented the salt-tolerant genotypes(Z9807,Z0228,and Z7526)whereas clusters II(Z0710,Z7514,Z1910,and Z7516)and III(Z0102,Z7780,Z9648,and Z9612)represented moderately salttolerant and salt-sensitive genotypes,respectively.Conclusions:A hydroponic screening system was established.Leaf relative water content and photosynthesis were identified as two reliable traits that adequately represented the salt tolerance of cotton genotypes at the seedling growth stage.Furthermore,three salt-tolerant genotypes were identified,which might be used as genetic resources for the salt-tolerance breeding of cotton.展开更多
Saline-alkaline stress can dramatically inhibit plant growth and limit crop production. Wild soybean (Glycine soja) is a crop that adapts well to such environmental stresses. In this study, RNA-sequencing technology...Saline-alkaline stress can dramatically inhibit plant growth and limit crop production. Wild soybean (Glycine soja) is a crop that adapts well to such environmental stresses. In this study, RNA-sequencing technology was used to analyze the transcriptome profles of G. soja roots subjected to 50 mmol·L^-1 NaHCO3 and 150 mmol·L^-1 NaCl treatments. Totally, 2 125 differentially-expressed genes (DEGs) after NaCl treatment and 1 839 DEGs after NaHCO3 treatment were identifed. The top 14 DEGs revealed by RNA-seq were analyzed using qRT-PCR (quantitative real-time polymerase chain reaction). Gene ontology (GO) annotation showed that most of DEGs under salt and alkali stresses were enriched in "metabolic process", "catalytic activity" and "binding" terms. To search for transcription factors (TFs) among DEGs, the data were screened against TF database PlantTFDB, and it was found that fve TF families, Apetala2/ethylene-responsive element binding proteins (AP2-EREBP), V-myb avian myeloblastosis viral oncogene homolog (MYB), WRKYGQK and Zinc fnger motif (WRKY), NAM, ATAF1/2, CUC1/2 (NAC) and Cys2/His2 (C2H2) were involved in salt stress response. Other fve TF families, NAC, WRKY, MYB, AP2-EREBP and bZIP were involved in response to alkali stress. These two stress treatments shared NAC, WRKY, AP2-EREBP and MYB, and the only two different TFs were bZIP and C2H2. Forty-eight MYB TFs were differentially expressed under salt and alkali stresses, and most of them were up-regulated. This study provided useful information for further investigation of DEGs and TFs in response to saline and alkaline stresses and helped in understanding the molecular basis of the response of G. soja to saline and alkaline stresses.展开更多
The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wal...The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis.展开更多
文摘Fasciclin-like arabinogalactan proteins(FLAs),a subclass of arabinogalactan proteins(AGPs),are usually involved in cell development in plants.To investigate the expression profiling as well
基金Supported by the Project of Twelfth Five-year Plan for Sci & Tech Research of China in Rural Areas(2011BAD35B02-01)Program of Sci & Tech Research of China(2011BAD16B11)
文摘To explore the germination mechanism of salt-stressed rice improved by exogenous proline, and provide a theoretical basis to rice direct sowing technology for salinized soil, the effects of soaking with proline on germination status, amylase activity and isoenzyme were studied in this paper. The results showed that germination status including germination energy(GE), germination rate(GR), relative germination energy(RGE) and relative germination rate(RGR) significantly decreased as the same as the activities of alpha-amylase, beta-amylase and the total amylase under salt stress. Soaking with exogenous proline improved the germination status of rice under salt stress. Moreover, GE and RGE of salt-stressed rice were improved with increasing of proline concentration at the range of 5-45 mmol ·L-1. Soaking with 15 mmol ·L-1 and 30 mmol ·L-1 proline significantly improved the amylase activities(e.g. alpha-amylase, beta-amylase and total amylase) of rice under salt stress. Salt stress inhibited the express of beta-amylase isoenzyme temporarily, but had few impacts on alpha-amylase isozyme. Soaking with 30 mmol ·L-1 proline brightened District I and increased the width of 'i' brand in District II of alpha-amylase isoenzyme, but had few impacts on beta-amylase isoenzyme. In a word, soaking with proline could effectively alleviate the inhibitory effects of salt stress on seed germination.
文摘Experiments were conducted to study the effects of selenium (Se) on glutathione peroxidase(GSH-Px) activity and the accumulation of malonaldehyde(MDA),the product of lipid peroxidation in soybean seedling, as well as the effect of Se on cell ultra structure of soybean leaf and nascent root under salt stress. Results showed that appropriate amount of Se addition increased GSH-Px activity in soybean leaves from 0. 810 to 1. 421μmol·g-1 fresh weight·min-1 F = 9.12, and reduced the concentration of MDA from 20.17 to 16.16 μmol·g-1 fresh weight, F = 5.44. Under salt stress,no obvious damage on chloplast membrane was observed in Se treated seedlings,and the structures of chloplast and mitochondrion were integrate,whereas in control (no Se addition),the cell membrane was destroyed seriously,chloplast degraded and mitochondrion disappeared. Compared with control,Se addition increased the dry matter weight of seedling by 2.92% to 21.86%, F =5.97.
基金Supported by the National Key R&D Program of China(2016YFD0300104)。
文摘The aims were to investigate the effect of salt stress on key enzyme activity of nitrogen metabolism and the concentration of nitrate nitrogen and ammonium nitrogen response to salt stress.Two rice cultivars,Mudanjiang 30(sensitive cultivar)and Longdao 5(salt-tolerant cultivar),were treated with different salt concentrations(CK 0%,S10.075%,S20.15%,S30.225%and S40.3%).The results showed that the activities of nitrate reductase(NR),glutamine synthase(GS),glutamate synthase(GOGAT)and glutamate dehydrogenase(GDH)in the functional leaves and roots of rice in cold region presented a single peak curve change and the peak occurred in the heading stage;compared with those of the CK,the activities of NR,GS and GOGAT of rice in cold region decreased,but the activity of GDH increased in the heading stage under salt stress.The variation for key enzyme activity of nitrogen metabolism was the highest under S4 treatment.The activities of NR,GS and GOGAT in the functional leaves significantly decreased compared with those in roots;the concentrations of nitrate nitrogen and ammonium nitrogen in the functional leaves and roots of rice in cold region presented a single peak curve change and the peak occurred in the heading stage;compared with that of the CK,the concentration of nitrate nitrogen decreased in leaves and roots,the concentration of ammonium nitrogen decreased and the concentration of ammonium nitrogen in roots increased under salt stress.The variations for the activities of NR,GS and GOGAT in the functional leaves and roots of Longdao 5 were less than those of Mudanjiang 30 under the same concentration of salt stress.
基金funded by National Key R&D Program of China(2020YFD1001004).
文摘Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted environmental stresses are becoming significant threats to sustainable cotton production,ultimately leading to a substantial irreversible economic loss.Mitogen-activated protein kinase(MAPK)is generally considered essential for recognizing environmental stresses through phosphorylating downstream signal pathways and plays a vital role in numerous biological processes.Results:We have identified 74 MAPK genes across cotton,41 from G.hirsutum,19 from G.raimondii,whereas 14 have been identified from G.arboreum.The MAPK gene-proteins have been further studied to determine their physicochemical characteristics and other essential features.In this perspective,characterization,phylogenetic relationship,chromosomal mapping,gene motif,cis-regulatory element,and subcellular localization were carried out.Based on phylogenetic analysis,the MAPK family in cotton is usually categorized as A,B,C,D,and E clade.According to the results of the phylogenic relationship,cotton has more MAPKS genes in Clade A than Clade B.The cis-elements identified were classified into five groups(hormone responsiveness,light responsiveness,stress responsiveness,cellular development,and binding site).The prevalence of such elements across the promoter region of these genes signifies their role in the growth and development of plants.Seven GHMAPK genes(GH_A07G1527,GH_D02G1138,GH_D03G0121,GH_D03G1517,GH_D05G1003,GH_D11G0040,and GH_D12G2528)were selected,and specific tissue expression and profiling were performed across drought and salt stresses.Results expressed that six genes were upregulated under drought treatment except for GH_D11G0040 which is downregulated.Whereas all the seven genes have been upregulated at various hours of salt stress treatment.Conclusions:RNA sequence and qPCR results showed that genes as differentially expressed across both vegetative and reproductive plant parts.Similarly,the qPCR analysis showed that six genes had been upregulated substantially through drought treatment while all the seven genes were upregulated across salt treatments.The results of this study showed that cotton GHMPK3 genes play an important role in improving cotton resistance to drought and salt stresses.MAPKs are thought to play a significant regulatory function in plants’responses to abiotic stresses according to various studies.MAPKs’involvement in abiotic stress signaling and innovation is a key goal for crop species research,especially in crop breeding.
文摘DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was reported that 6.5% of the whole cytosine residues in the nuclear DNA in
基金This work was supported by National R&D Project of Transgenic Crops of Ministry of Science and Technology of China(2016ZX08005–004-002).
文摘Background:Soil salt stress seriously restricts the yield and quality of cotton worldwide.To investigate the molecular mechanism of cotton response to salt stress,a main cultivated variety Gossypium hirsutum L.acc.Xinluzhong 54 was used to perform transcriptome and proteome integrated analysis.Results:Through transcriptome analysis in cotton leaves under salt stress for 0 h(T0),3 h(T3)and 12 h(T12),we identified 8436,11628 and 6311 differentially expressed genes(DEGs)in T3 vs.T0,T12 vs.T0 and T12 vs.T3,respectively.A total of 459 differentially expressed proteins(DEPs)were identified by proteomic analysis,of which 273,99 and 260 DEPs were identified in T3 vs.T0,T12 vs.T0 and T12 vs.T3,respectively.Metabolic pathways,biosynthesis of secondary metabolites,photosynthesis and plant hormone signal transduction were enriched among the identified DEGs or DEPs.Detail analysis of the DEGs or DEPs revealed that complex signaling pathways,such as abscisic acid(ABA)and jasmonic acid(JA)signaling,calcium signaling,mitogen-activated protein kinase(MAPK)signaling cascade,transcription factors,activation of antioxidant and ion transporters,were participated in regulating salt response in cotton.Conclusions:Our research not only contributed to understand the mechanism of cotton response to salt stress,but also identified nine candidate genes,which might be useful for molecular breeding to improve salt-toleranee in cotton.
基金funded by the National Natural Science Foundation of China(31530053/31621005)the National Key R&D Program(2016YFD0101401/2017YFD0101601)
文摘Background:Cotton(Gossypium hirsutum) provides the largest natural fiber for the textile manufacturing industries,but its production is on the decline due to the effects of salinity.Soil salt-alkalization leads to damage in cotton growth and a decrease in yields.Hyperosmolality-gated calcium-permeable channels(OSCA) have been found to be involved in the detection of extracellular changes which trigger an increase in cytosolic free calcium concentration.Hyperosmolality-induced calcium ion increases have been widely speculated to be playing a role in osmosensing in plants.However,the molecular nature of the corresponding calcium ion channels remains unclearly.In this research work,we describe the OSCA genes and their putative function in osmosensing in plants by carrying out genomewide identification,characterization and functional analysis of the significantly up-regulated OSCA gene,GhOSCA1.1 through reverse genetics.Result:A total of 35,21 and 22 OSCA genes were identified in G.hirsutum,G.arboreum,and G.raimondii genomes,respectively,and were classified into four different clades according to their gene structure and phylogenetic relationship.Gene and protein structure analysis indicated that 35 GhOSCA genes contained a conserved RSN17 TM(PF02714) domain.Moreover,the cis-regulatory element analysis indicated that the OSCA genes were involved in response to abiotic stress.Furthermore,the knockdown of one of the highly up-regulated genes,GhOSCA1.1 showed that the virus-induced gene silenced(VIGS) plants were highly sensitive to dehydration and salinity stresses compared with the none VIGS plants as evident with higher concentration levels of oxidant enzymes compared with the antioxidant enzymes on the leaves of the stressed plants.Conclusion:This study provides the first systematic analysis of the OSCA gene family and will be important for understanding the putative functions of the proteins encoded by the OSCA genes in cotton.These results provide a new insight of defense responses in general and lay the foundation for further investigation of the molecular role played by the OSCA genes,thereby providing suitable approaches to improve crop performance under salinity and drought stress conditions.
基金Supported by the Major Scientific Research Projects of the 12th Five-year National Public welfare Industry(201104002-6)
文摘In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time.
基金supported by China Agriculture Research System of MOF and MOARAAgricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Science
文摘Background: Nucleobase-ascorbate transporters(NAT), synonymously called nucleobase-cation symporter 2(NCS2) proteins, were earlier reported to be involved in plant growth, development and resistance to stress. Previous studies concluded that s a polymorphic SNP associated with NAT12 was significant di erent between salt-tolerant and salt-sensitive materials of upland cotton. In current study, a comprehensive analysis of NAT family genes was conducted for the first time in cotton.Results: In this study, we discovered 32, 32, 18, and 16 NAT genes in Gossypium hirsutum, G. barbadense, G. raimondii and G. arboreum, respectively, which were classified into four groups(groups I–IV) based on the multiple sequence analysis. These GhNAT genes were unevenly distributed on At and Dt sub-genome in G. hirsutum. Most GhNAT members in the same group had similar gene structure characteristics and motif composition. The collinearity analysis revealed segmental duplication as well as tandem duplication contributing to the expansion of the GhNATs. The analysis of cis-acting regulatory elements of GhNATs showed that the function of GhNAT genes in cotton might be related to plant hormone and stress response. Under di erent conditions, the expression levels further suggested the GhNAT family genes were associated with plant response to various abiotic stresses. GhNAT12 was detected in the plasma membrane. And it was validated that the GhNAT12 gene played an important role in regulating cotton resistance to salt and drought stress through the virus-induced gene silencing(VIGS) analysis.Conclusions: A comprehensive analysis of NAT gene family was performed in cotton, including phylogenetic analysis, chromosomal location, collinearity analysis, motifs, gene structure and so on. Our results will further broaden the insight into the evolution and potential functions of NAT genes in cotton. Current findings could make significant contribution towards screening more candidate genes related to biotic and abiotic resistance for the improvement in cotton.
基金Supported by 11th Five Years Key Programs for Science and Technology Development of China(2006BAD03A0306)
文摘Many plants accumulate compatible solutes in response to the imposition of environmental stresses.Glycine betaine, which is one of compatible solutes in cell of plants,has been shown to have surviving ability for plant from salt stress.Effect of glycine betaine on improving plant salt resistance was discussed in plants under salt stress.The accumulation of glycine betaine protects plants against the damaging effects of stress.Strategies of glycine betaine against the damaging effects of stress were analyzed to clarify the roles of glycine betaine in salt stress tolerance of plants.
基金Supported by the National Natural Science Funds (31201397)Science Fund for Distinguished Young Scholars Program for Changjiang Scholars and Innovative Research Team in University (IRT0959)Doctor Start Fund of Northeast Agricultural University (2010RCB59)
文摘Growth and osmotic response of Lactobacillus bulgaricus ATCC 11842 under hyperosmotic constraint were investigated in a chemically defined medium (CDM) and MRS medium. NaCl could inhibit the growth of L. bulgaricus which decreased with increasing NaCl concentration. In the MRS, NaCl of 1.0 mol·L-1 was the biggest salt stress concentration; in the CDM, 0.8 mol·L-1 was the biggest inhibition concentration. In contrast to what was observed in other lactic acid bacteria, proline, glycine betaine and related molecules were unable to relieve inhibition of growth of L. bulgaricus under osmotic constraint. This was correlated to the absence of sequences homologous to the genes coding for glycine-betaine and/or proline transporters described in Lactococcus lactis and Bacillus subtilis. The amino acid aspartate and alanine were proved to be osmoprotective under NaCl stress. Addition of peptone (0.25% w/v) in the presence of salt led to a stimulation of the growth, as the decrease of the lag time and generation time, and the final biomass increased from 0.31 to 0.64.
基金supported by National Key R&D Program(2017YFD0101600)State Key Laboratory of Cotton Biology(CB2019C17)。
文摘Background:Salt stress significantly inhibits the growth,development,and productivity of cotton because of osmotic,ionic,and oxidative stresses.Therefore,the screening and development of salt tolerant cotton cultivars is a key issue towards sustainable agriculture.This study subjected 11 upland cotton genotypes at the seedling growth stage to five different salt concentrations and evaluated their salt tolerance and reliable traits.Results:Several morpho-physiological traits were measured after 10 days of salinity treatment and the salt tolerance performance varied significantly among the tested cotton genotypes.The optimal Na Cl concentration for the evaluation of salt tolerance was 200 mmol·L-1.Membership function value and salt tolerance index were used to identify the most consistent salt tolerance traits.Leaf relative water content and photosynthesis were identified as reliable indicators for salt tolerance at the seedling stage.All considered traits related to salt tolerance indices were significantly and positively correlated with each other except for malondialdehyde.Cluster heat map analysis based on the morpho-physiological salt tolerance-indices clearly discriminated the 11 cotton genotypes into three different salt tolerance clusters.Cluster I represented the salt-tolerant genotypes(Z9807,Z0228,and Z7526)whereas clusters II(Z0710,Z7514,Z1910,and Z7516)and III(Z0102,Z7780,Z9648,and Z9612)represented moderately salttolerant and salt-sensitive genotypes,respectively.Conclusions:A hydroponic screening system was established.Leaf relative water content and photosynthesis were identified as two reliable traits that adequately represented the salt tolerance of cotton genotypes at the seedling growth stage.Furthermore,three salt-tolerant genotypes were identified,which might be used as genetic resources for the salt-tolerance breeding of cotton.
基金Supported by the National Science Foundation of China(31771692)Major Project on Breeding of New Varieties of Genetically Modified Organisms(2011ZX08004-002)
文摘Saline-alkaline stress can dramatically inhibit plant growth and limit crop production. Wild soybean (Glycine soja) is a crop that adapts well to such environmental stresses. In this study, RNA-sequencing technology was used to analyze the transcriptome profles of G. soja roots subjected to 50 mmol·L^-1 NaHCO3 and 150 mmol·L^-1 NaCl treatments. Totally, 2 125 differentially-expressed genes (DEGs) after NaCl treatment and 1 839 DEGs after NaHCO3 treatment were identifed. The top 14 DEGs revealed by RNA-seq were analyzed using qRT-PCR (quantitative real-time polymerase chain reaction). Gene ontology (GO) annotation showed that most of DEGs under salt and alkali stresses were enriched in "metabolic process", "catalytic activity" and "binding" terms. To search for transcription factors (TFs) among DEGs, the data were screened against TF database PlantTFDB, and it was found that fve TF families, Apetala2/ethylene-responsive element binding proteins (AP2-EREBP), V-myb avian myeloblastosis viral oncogene homolog (MYB), WRKYGQK and Zinc fnger motif (WRKY), NAM, ATAF1/2, CUC1/2 (NAC) and Cys2/His2 (C2H2) were involved in salt stress response. Other fve TF families, NAC, WRKY, MYB, AP2-EREBP and bZIP were involved in response to alkali stress. These two stress treatments shared NAC, WRKY, AP2-EREBP and MYB, and the only two different TFs were bZIP and C2H2. Forty-eight MYB TFs were differentially expressed under salt and alkali stresses, and most of them were up-regulated. This study provided useful information for further investigation of DEGs and TFs in response to saline and alkaline stresses and helped in understanding the molecular basis of the response of G. soja to saline and alkaline stresses.
基金Supported by "863" Project(2008AA10Z153)the National Natural Science Foundation of China(31171578)+1 种基金Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program(2011TD005)the National Basic Scientific Talent Training Fund Projects(J1210069)
文摘The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis.