A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of...A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.展开更多
The singularly perturbed bifurcation subsystem is described, and the test conditions of subsystem persistence are deduced. By use of fast and slow reduced subsystem model, the result does not require performing nonlin...The singularly perturbed bifurcation subsystem is described, and the test conditions of subsystem persistence are deduced. By use of fast and slow reduced subsystem model, the result does not require performing nonlinear transformation. Moreover, it is shown and proved that the persistence of the periodic orbits for Hopf bifurcation in the reduced model through center manifold. Van der Pol oscillator circuit is given to illustrate the persistence of bifurcation subsystems with the full dynamic system.展开更多
基金Project(10672053) supported by the National Natural Science Foundation of ChinaProject(2002AA503010) supported by the National High-Tech Research and Development Program of China
文摘A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.
基金the National Natural Science Foundation of China (60574011)Department of Science and Technology of Liaoning Province (2001401041).
文摘The singularly perturbed bifurcation subsystem is described, and the test conditions of subsystem persistence are deduced. By use of fast and slow reduced subsystem model, the result does not require performing nonlinear transformation. Moreover, it is shown and proved that the persistence of the periodic orbits for Hopf bifurcation in the reduced model through center manifold. Van der Pol oscillator circuit is given to illustrate the persistence of bifurcation subsystems with the full dynamic system.