The singularly perturbed bifurcation subsystem is described, and the test conditions of subsystem persistence are deduced. By use of fast and slow reduced subsystem model, the result does not require performing nonlin...The singularly perturbed bifurcation subsystem is described, and the test conditions of subsystem persistence are deduced. By use of fast and slow reduced subsystem model, the result does not require performing nonlinear transformation. Moreover, it is shown and proved that the persistence of the periodic orbits for Hopf bifurcation in the reduced model through center manifold. Van der Pol oscillator circuit is given to illustrate the persistence of bifurcation subsystems with the full dynamic system.展开更多
随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准...随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准确地构建稳定域边界。针对传统连续潮流法和非线性规划法计算量大的问题,提出一种基于SVSR边界拓扑性质的SVSR边界构建优化模型,根据边界连续且光滑的性质,由已知边界点通过预测-校正方法直接计算相邻边界点。在此模型基础上提出一种极限诱导分岔识别方法,构建考虑极限诱导分岔的SVSR边界。最后通过算例分析验证了所提方法的可行性和准确性。展开更多
为了反映风电系统参数连续变化对其电压稳定性的影响和揭示风电系统电压稳定机制,针对目前的分岔理论研究了风电系统电压稳定性的局限性,对风电系统进行了两参数鞍结分岔边界的计算与研究。借助常规电力系统计算二维参数分岔边界的方法...为了反映风电系统参数连续变化对其电压稳定性的影响和揭示风电系统电压稳定机制,针对目前的分岔理论研究了风电系统电压稳定性的局限性,对风电系统进行了两参数鞍结分岔边界的计算与研究。借助常规电力系统计算二维参数分岔边界的方法和思路,以风电注入有功功率Pinject、静止无功补偿(static var compensation,SVC)参数Bmax、放大倍数Kr为分岔控制参数,计算得到风电系统节点电压鞍结二维分岔边界。在此基础上深入分析,最后得出风电场注入有功和SVC参数共同作用下影响风电系统电压稳定性的规律:在SVC参数Bmax(或Kr)和风电注入有功功率Pinject的共同作用下,风电场机端(即补偿点)电压稳定性得以提高;增大SVC参数Bmax和Kr,都能有效扩展鞍结分岔边界,并且Bmax的作用更明显。展开更多
基金the National Natural Science Foundation of China (60574011)Department of Science and Technology of Liaoning Province (2001401041).
文摘The singularly perturbed bifurcation subsystem is described, and the test conditions of subsystem persistence are deduced. By use of fast and slow reduced subsystem model, the result does not require performing nonlinear transformation. Moreover, it is shown and proved that the persistence of the periodic orbits for Hopf bifurcation in the reduced model through center manifold. Van der Pol oscillator circuit is given to illustrate the persistence of bifurcation subsystems with the full dynamic system.
文摘随着高比例可再生能源在电力系统中的广泛应用,可再生能源的波动性和随机性对电力系统静态电压稳定评估带来挑战,电力系统静态电压稳定域(static voltage stability region,SVSR)可以全面分析和监测电力系统电压稳定性,其关键是快速准确地构建稳定域边界。针对传统连续潮流法和非线性规划法计算量大的问题,提出一种基于SVSR边界拓扑性质的SVSR边界构建优化模型,根据边界连续且光滑的性质,由已知边界点通过预测-校正方法直接计算相邻边界点。在此模型基础上提出一种极限诱导分岔识别方法,构建考虑极限诱导分岔的SVSR边界。最后通过算例分析验证了所提方法的可行性和准确性。
文摘为了反映风电系统参数连续变化对其电压稳定性的影响和揭示风电系统电压稳定机制,针对目前的分岔理论研究了风电系统电压稳定性的局限性,对风电系统进行了两参数鞍结分岔边界的计算与研究。借助常规电力系统计算二维参数分岔边界的方法和思路,以风电注入有功功率Pinject、静止无功补偿(static var compensation,SVC)参数Bmax、放大倍数Kr为分岔控制参数,计算得到风电系统节点电压鞍结二维分岔边界。在此基础上深入分析,最后得出风电场注入有功和SVC参数共同作用下影响风电系统电压稳定性的规律:在SVC参数Bmax(或Kr)和风电注入有功功率Pinject的共同作用下,风电场机端(即补偿点)电压稳定性得以提高;增大SVC参数Bmax和Kr,都能有效扩展鞍结分岔边界,并且Bmax的作用更明显。