针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进...为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进算法应用到某企业客户分类中时,为提高分类结果的表征性,提出了以客户最近购买时间(Recency)、购买频次(Frequency)、平均购买额(Average Monetary)和购买倾向(Trend)作为客户价值细分变量的RFAT(Recency,frequency,average monetary and trend)模型,对客户RFAT值进行了聚类分析,并提供了针对不同客户群的营销策略。实证研究表明,该文所提出的改进算法和模型可以有效地对企业客户进行分类,能充分反映客户的当前价值和增值潜能。展开更多
针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩...针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。展开更多
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
文摘为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进算法应用到某企业客户分类中时,为提高分类结果的表征性,提出了以客户最近购买时间(Recency)、购买频次(Frequency)、平均购买额(Average Monetary)和购买倾向(Trend)作为客户价值细分变量的RFAT(Recency,frequency,average monetary and trend)模型,对客户RFAT值进行了聚类分析,并提供了针对不同客户群的营销策略。实证研究表明,该文所提出的改进算法和模型可以有效地对企业客户进行分类,能充分反映客户的当前价值和增值潜能。
文摘针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。