期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Temporal-spatial subspaces modern combination method for 2D-DOA estimation in MIMO radar 被引量:9
1
作者 Youssef Fayad Caiyun Wang Qunsheng Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期697-702,共6页
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ... A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance. 展开更多
关键词 direction of arrival estimation (DOAE) temporal subspace spatial subspace estimating signal parameters via rotational invariance technique (ESPRIT)
在线阅读 下载PDF
Low-complexity method for DOA estimation based on ESPRIT 被引量:7
2
作者 Xuebin Zhuang Xiaowei Cui Mingquan Lu Zhenming Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期729-733,共5页
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult... A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method. 展开更多
关键词 direction of arrival(DOA) multistage Wiener filter(MSWF) conjugate gradient(CG) estimation signal parameters via rotational invariance technique(ESPRIT) eigenvalue decomposition(EVD).
在线阅读 下载PDF
Fingerprint singular points extraction based on orientation tensor field and Laurent series 被引量:3
3
作者 刘琴 彭可 +4 位作者 刘巍 谢琴 李仲阳 兰浩 金耀 《Journal of Central South University》 SCIE EI CAS 2014年第5期1927-1934,共8页
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s... Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations. 展开更多
关键词 fingerprint extraction singular point fingerprint orientation tensor field Laurent series rotational invariance supportvector machine (SVM)
在线阅读 下载PDF
Frequency domain polarization weighted ESPRIT method for bearing angle 被引量:2
4
作者 Wei Liu Shengchun Piao +2 位作者 Junyuan Guo Qingxin Meng Hanhao Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期769-775,共7页
The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization... The signal to noise ratio (SNR) of seismic waves is usually very low after long distance transmission. For this condition, to improve the bearing estimation capability in the low SNR, a frequency domain polarization weighted ESPRIT method using a single vector device is proposed. The frequency domain polari- zation parameters extracted from the signals are used to design the weighted function which is applied to the received signals. The bearing angle and the target frequency are estimated through ESPRIT using the weighted signals. The simulation and experiment results show that the presented method can obtain accurate estimation values under the low SNR with little prior information. 展开更多
关键词 vector seismic signal frequency domain polarizationweight bearing angle estimation estimation of signal parametersvia rotational invariance techniques (ESPRIT).
在线阅读 下载PDF
Fast BSC-based algorithm for near-field signal localization via uniform circular array 被引量:1
5
作者 SU Xiaolong LIU Zhen +3 位作者 SUN Bin WANG Yang CHEN Xin LI Xiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期269-278,共10页
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ... In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity. 展开更多
关键词 near-field signal uniform circular array(UCA) beam space conversion(BSC) improved estimation of signal parame-ters via rotational invariance techniques(ESPRIT) 1-D multiple signal classification(MUSIC) parameter estimation
在线阅读 下载PDF
Symbols detection for frequency-selective V-BLAST OFDM systems
6
作者 WuXiaojun LiXing WangJilong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期418-425,共8页
As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next... As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme. 展开更多
关键词 orthogonal frequency-division multiplexing vertical Bell Labs layered space-time architecture symbols detection frequency-selective fading joint space-frequency demultiplexing rotational invariance joint space-frequency coding.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部