In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文...第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文提出一种基于相关矩阵托普利兹(Toeplitz)特性的信道估计算法。依据信道的相干带宽特性计算信道相关矩阵并保留必要的较低矩阵阶数;基于相关矩阵的Toeplitz特性设计低复杂度的递归求逆算法,并针对加权矩阵乘法的元素重复性将矩阵乘法化简为矩阵点乘,简化加权矩阵运算;同时引入跟踪信噪比变化的缩放补偿因子对计算过程和结果分别进行缩放和补偿。理论分析和仿真结果显示,本文所提算法可在达到优异的信道估计性能条件下,有效降低运算复杂度,并极大降低算法矩阵处理的动态范围。展开更多
针对传统的自回归模型和自回归移动平均模型在齿轮箱早期异常检测中准确性不足的问题,采用有源自回归模型(autoregressive with extra inputs model,ARX)和统计过程控制相结合的方法进行齿轮箱早期异常检测。首先,对原始振动数据进行时...针对传统的自回归模型和自回归移动平均模型在齿轮箱早期异常检测中准确性不足的问题,采用有源自回归模型(autoregressive with extra inputs model,ARX)和统计过程控制相结合的方法进行齿轮箱早期异常检测。首先,对原始振动数据进行时域同步平均降噪处理;然后考虑到负载变化对输出信号的影响,提取信号的包络表征负载变化信息并作为模型的输入结合赤池信息准则(akaike information criterion,AIC)和最小二乘法建立模型;最后分别采用统计过程控制、支持向量数据描述(support vector data description,SVDD)、核主成分分析(kernel principal component analysis,KPCA)对残差数据的均方根值进行处理。结果表明,ARX模型结合指数加权移动平均(exponential weighed moving average,EWMA)控制图在第44个文件发现早期异常,相比于自回归模型、自回归移动平均模型、SVDD和KPCA分别提前11、6个、10和11个文件检测出异常,从而验证了该方法的可行性和有效性,对齿轮箱早期异常检测有重要意义。展开更多
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.
文摘第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文提出一种基于相关矩阵托普利兹(Toeplitz)特性的信道估计算法。依据信道的相干带宽特性计算信道相关矩阵并保留必要的较低矩阵阶数;基于相关矩阵的Toeplitz特性设计低复杂度的递归求逆算法,并针对加权矩阵乘法的元素重复性将矩阵乘法化简为矩阵点乘,简化加权矩阵运算;同时引入跟踪信噪比变化的缩放补偿因子对计算过程和结果分别进行缩放和补偿。理论分析和仿真结果显示,本文所提算法可在达到优异的信道估计性能条件下,有效降低运算复杂度,并极大降低算法矩阵处理的动态范围。
文摘针对传统的自回归模型和自回归移动平均模型在齿轮箱早期异常检测中准确性不足的问题,采用有源自回归模型(autoregressive with extra inputs model,ARX)和统计过程控制相结合的方法进行齿轮箱早期异常检测。首先,对原始振动数据进行时域同步平均降噪处理;然后考虑到负载变化对输出信号的影响,提取信号的包络表征负载变化信息并作为模型的输入结合赤池信息准则(akaike information criterion,AIC)和最小二乘法建立模型;最后分别采用统计过程控制、支持向量数据描述(support vector data description,SVDD)、核主成分分析(kernel principal component analysis,KPCA)对残差数据的均方根值进行处理。结果表明,ARX模型结合指数加权移动平均(exponential weighed moving average,EWMA)控制图在第44个文件发现早期异常,相比于自回归模型、自回归移动平均模型、SVDD和KPCA分别提前11、6个、10和11个文件检测出异常,从而验证了该方法的可行性和有效性,对齿轮箱早期异常检测有重要意义。