This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system...This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system not only is exponentially stable but also satisfies, H ∞ disturbance attenuance via memoryless state feedback control. Sufficient conditions for feasibility are obtained in terms of LMIs. Moreover, optimization of LMI is considered such that the controller with low gain parameters is formulated.展开更多
这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标...这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标准界限限制。所有获得的结果是延期依赖者并且由不包含系统矩阵的分解的严格的 LMI 提出。数字例子证明建议方法不比存在的保守。展开更多
The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robu...The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robust stabilization is to design a memoryless state feedback law such that the resulting closed-loop system is robustly stable A sufficient condition that uncertain continuous descriptor system is robustly stabilizabled by state feedback law is derived in terms of linear matrix inequality (LMI). Finally, a numerical example is provided to demonstrate the application of the proposed method.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent...The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
The design of decentralized robust H_∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigat...The design of decentralized robust H_∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigated. Based on the bounded real lemma a sufficient condition for the existence of a decentralized robust H_∞ state feedback controller was derived. This condition is expressed as the feasibility problem of a certain nonlinear matrix inequality. The controller, which makes the closed-loop large-scale system robust stable and satisfies the given H_∞ performance, is obtained by the offered homotopy iterative linear matrix inequality method. A numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtain...The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.展开更多
This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the ass...This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic stability and γ-disturbance attenuation H∞ property are presented. A key feature of this scheme is that the gain matrices of controller are only based on It, the observed projection of the current regime rt.展开更多
A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation con...A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10^-3 rad/s order.展开更多
文摘This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system not only is exponentially stable but also satisfies, H ∞ disturbance attenuance via memoryless state feedback control. Sufficient conditions for feasibility are obtained in terms of LMIs. Moreover, optimization of LMI is considered such that the controller with low gain parameters is formulated.
文摘这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标准界限限制。所有获得的结果是延期依赖者并且由不包含系统矩阵的分解的严格的 LMI 提出。数字例子证明建议方法不比存在的保守。
基金Supported by National Natural Science Foundation of P. R. China (60325311, 60534010, 60572070, 60521003), the Program for Changjiang Scholars and Innovative Research Team in University (IRT0421)
文摘柔韧的 H 联网了控制方法因为有无常和时间的模糊系统推迟的 Takagi-Sugeno (T-S ) 被介绍。一个州的反馈控制器经由联网的控制系统(NCS ) 被设计理论。为有 H 性能的柔韧的稳定性的足够的状况被获得。在网络传播和包退学学生的导致网络的延期被分析。模拟结果显示出这个控制计划的有效性。
基金This work was supported by the National Natural Science Foundation of China (61374054, 61203007), and Natural Science Foundation Research Projection of Shaanxi Province (2013JQ8038).
基金This work was supported in part by the National Natural Science Foundation of China (11562006, 11661025), the Outstanding Young Teachers Training in Higher Education Institutions of Guangxi (gxqg022014025), and the Natural Science Foundation of Guangxi Province (2015GXNSFAA139013).
基金This project was supported by the Science and Technology Found of Liaoning Province (200140104)
文摘The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robust stabilization is to design a memoryless state feedback law such that the resulting closed-loop system is robustly stable A sufficient condition that uncertain continuous descriptor system is robustly stabilizabled by state feedback law is derived in terms of linear matrix inequality (LMI). Finally, a numerical example is provided to demonstrate the application of the proposed method.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
文摘The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
基金Project (60474003) supported by the National Natural Science Foundation of China project(20050533028) supported bythe Specialized Research Fund for the Doctoral Programof Higher Education of China
文摘The design of decentralized robust H_∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigated. Based on the bounded real lemma a sufficient condition for the existence of a decentralized robust H_∞ state feedback controller was derived. This condition is expressed as the feasibility problem of a certain nonlinear matrix inequality. The controller, which makes the closed-loop large-scale system robust stable and satisfies the given H_∞ performance, is obtained by the offered homotopy iterative linear matrix inequality method. A numerical example is given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (60574083)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (SRF for ROCS),State Education Ministry of China.
文摘The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.
基金Supported by National Young Science Foundation of P.R.China(60604003)National Natural Science Key Foundation of P.R.China(60434020)National Key Technologies Research and Development Program in the 10th Five-year Plan(2001BA204B01)
文摘这份报纸处理与州的时间延期,参数无常和未知统计特征,但是与有限力量骚乱为 Lurie 单个系统的一个班过滤的柔韧的 H 的问题,试图设计一个要用体力地稳定的过滤器以便单个系统是的不明确的 Lurie 时间延期不仅常规,免费、稳定的推动,而且为所有可被考虑的无常为过滤错误动力学有 H 性能的规定水平。为如此的一个过滤器的存在的一个足够的条件以线性矩阵不平等(LMI ) 被建议。当 LMI 的这个集合的一个答案存在时,一个需要的过滤器的参量的矩阵能容易用 LMI 工具箱被获得。
基金Supported by National Natural Science Foundation of P. R. China (60274012)
文摘This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic stability and γ-disturbance attenuation H∞ property are presented. A key feature of this scheme is that the gain matrices of controller are only based on It, the observed projection of the current regime rt.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2002AA745120)the National Defense Pre-research Foundation(9140A09020706JW314)the National Natural Science Foundationof China(160402003).
文摘A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10^-3 rad/s order.