Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in ...Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in low-concentration electrolytes.Herein,we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.The Zn(TFSI)_(2)salt catalyzes the ring-opening polymerization of(1,3-dioxolane(DOL)),generating oxidation-resistant and non-combustible long-chain polymer(poly(1,3-dioxolane)(pDOL)).The pDOL reduces the active H_(2)O molecules in electrolyte and assists in forming stable organic–inorganic gradient solid electrolyte interphase with rich organic constituents,ZnO and ZnF_(2).The introduction of pDOL endows the electrolyte with several advantages:excellent Zn dendrite inhibition,improved corrosion resistance,widened electrochemical window(2.6 V),and enhanced low-temperature performance(freezing point=-34.9°C).Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02%Coulomb efficiency and maintains a lifetime of 8200 h.Moreover,Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%.A Zn//VO_(2)pouch cell assembled with lean electrolyte(electrolyte/capacity(E/C=41 mL(Ah)^(-1))also demonstrates a capacity retention ratio of 92%after 600 cycles.These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)2-mediated electrolyte engineering.展开更多
Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via...Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.展开更多
Ring-opening polymerization of D,L-lactide has been successfully carried out by(ArO)2Sm (THF)4 (ArO = 2, 6-ditertbutyl(4-methylphenoxo-) as catalyst for the first time.The catalyst contentration, monomer concentration...Ring-opening polymerization of D,L-lactide has been successfully carried out by(ArO)2Sm (THF)4 (ArO = 2, 6-ditertbutyl(4-methylphenoxo-) as catalyst for the first time.The catalyst contentration, monomer concentration and solvent showed a marked effect onthe polymerization. The polymerization rate decrease with increase of monomer concentra-tion and decrease of catalyst concentration. The initiation mechanism has been discussed ac-cording to the results of end-group analysis of oligomer by IR. The active species are sup-posed to be a samarium enolate formed from the reaction of (ArO)2Sm(THF)4 with lactide.展开更多
为得到聚乳酸的最佳制备工艺,利用微波辐射技术实现D,L-丙交酯开环聚合制备聚乳酸,实验考查了催化剂种类和用量,微波辐照功率和时间等工艺参数对产物分子量的影响,以及反应过程中体系温度的变化.研究表明,以连续微波炉作为反应器,催化剂...为得到聚乳酸的最佳制备工艺,利用微波辐射技术实现D,L-丙交酯开环聚合制备聚乳酸,实验考查了催化剂种类和用量,微波辐照功率和时间等工艺参数对产物分子量的影响,以及反应过程中体系温度的变化.研究表明,以连续微波炉作为反应器,催化剂Sn(Oct)2用量为丙交酯单体用量的0.56%(质量分数),在功率为90 W的连续微波辐射下反应10 m in,可获得粘均分子量(Mη)为15.92×104的聚乳酸(PDLLA).与家用微波炉相比,采用连续微波炉反应器,可在较短的反应时间内获得较高产率的聚乳酸产物.展开更多
基金financially supported by the National Natural Science Foundation of China(52162036 and 22378342)Key Project of Nature Science Foundation of Xinjiang(2021D01D08)+2 种基金Major Projects of Xinjiang(2022A01005-4 and 2021A01001-1)Key Research and Development Project of Xinjiang(2023B01025-1)the support from the Doctoral Student Special Program of the Young Talents Support Project of the China Association for Science and Technology in 2024。
文摘Practical Zn metal batteries have been hindered by several challenges,including Zn dendrite growth,undesirable side reactions,and unstable electrode/electrolyte interface.These issues are particularly more serious in low-concentration electrolytes.Herein,we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.The Zn(TFSI)_(2)salt catalyzes the ring-opening polymerization of(1,3-dioxolane(DOL)),generating oxidation-resistant and non-combustible long-chain polymer(poly(1,3-dioxolane)(pDOL)).The pDOL reduces the active H_(2)O molecules in electrolyte and assists in forming stable organic–inorganic gradient solid electrolyte interphase with rich organic constituents,ZnO and ZnF_(2).The introduction of pDOL endows the electrolyte with several advantages:excellent Zn dendrite inhibition,improved corrosion resistance,widened electrochemical window(2.6 V),and enhanced low-temperature performance(freezing point=-34.9°C).Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02%Coulomb efficiency and maintains a lifetime of 8200 h.Moreover,Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%.A Zn//VO_(2)pouch cell assembled with lean electrolyte(electrolyte/capacity(E/C=41 mL(Ah)^(-1))also demonstrates a capacity retention ratio of 92%after 600 cycles.These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)2-mediated electrolyte engineering.
基金supported by The National Natural Science Foundation of China(21504039)。
文摘Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.
文摘Ring-opening polymerization of D,L-lactide has been successfully carried out by(ArO)2Sm (THF)4 (ArO = 2, 6-ditertbutyl(4-methylphenoxo-) as catalyst for the first time.The catalyst contentration, monomer concentration and solvent showed a marked effect onthe polymerization. The polymerization rate decrease with increase of monomer concentra-tion and decrease of catalyst concentration. The initiation mechanism has been discussed ac-cording to the results of end-group analysis of oligomer by IR. The active species are sup-posed to be a samarium enolate formed from the reaction of (ArO)2Sm(THF)4 with lactide.
文摘为得到聚乳酸的最佳制备工艺,利用微波辐射技术实现D,L-丙交酯开环聚合制备聚乳酸,实验考查了催化剂种类和用量,微波辐照功率和时间等工艺参数对产物分子量的影响,以及反应过程中体系温度的变化.研究表明,以连续微波炉作为反应器,催化剂Sn(Oct)2用量为丙交酯单体用量的0.56%(质量分数),在功率为90 W的连续微波辐射下反应10 m in,可获得粘均分子量(Mη)为15.92×104的聚乳酸(PDLLA).与家用微波炉相比,采用连续微波炉反应器,可在较短的反应时间内获得较高产率的聚乳酸产物.