The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
Platycodon grandiflorum A.DC.(PAl)C)root was taken as experiment material to extract polysaccharide.On the base of single factor tests(extraction time,extraction temperature,liquid-solid ratio,solvent pH value and NaC...Platycodon grandiflorum A.DC.(PAl)C)root was taken as experiment material to extract polysaccharide.On the base of single factor tests(extraction time,extraction temperature,liquid-solid ratio,solvent pH value and NaCl concentration),the study concluded the main factors affecting the extraction of PADC polysaccharide,which are liquid-solid ratio,extraction time and extraction temperature.Then through central-composite test design,the extraction conditions were concluded as liquid-solid ratio 34.43,extraction time 89.83 min and extraction temperature 52.47℃.By means of validation experiments,the adequacy of this model was confirmed.展开更多
Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive proble...Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amou...The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.展开更多
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind...In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.展开更多
To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ...To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.展开更多
Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research top...Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.展开更多
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on i...The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.展开更多
Some effective parameters on the copper extraction from Kiire chalcopyrite concentrate were optimized by using response surface methodology (RSM). Experiments designed by RSM were carried out in the presence of ammo...Some effective parameters on the copper extraction from Kiire chalcopyrite concentrate were optimized by using response surface methodology (RSM). Experiments designed by RSM were carried out in the presence of ammonium persulfate (APS) and different types of impeller in an autoclave system. Ammonium persulfate concentration and leaching temperature were defined numerically and three types of impellers were defined categorically as independent variables using experimental design software. The optimum condition for copper extraction from the chalcopyrite concentrate is found to be ammonium persulfate concentration of 277.77 kg/m3, leaching temperature of 389.98 K and wheel type of impeller. The proposed model equation using RSM has shown good agreement with the experimental data, with correlation coefficients R2 and RaZaj for the model as 0.89 and 0.84, respectively.展开更多
In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are so...In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.展开更多
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging ...The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
Polysaccharide production from tea flower(TFPS) was carried out using supercritical fluid extraction(SFE).Response surface methodology(RSM),based on a five level,four variable small central composite design,was employ...Polysaccharide production from tea flower(TFPS) was carried out using supercritical fluid extraction(SFE).Response surface methodology(RSM),based on a five level,four variable small central composite design,was employed to obtain the best possible combination of extraction time,pressure,temperature and ethanol content of modifier for maximum production.The optimum conditions were as follows:extraction time of 170 min,pressure of45 MPa,temperature of 75 ℃,and 50% aqueous ethanol solution as modifier.Under these conditions,the experimental yield was 6.56 ± 0.37%,which was similar to the value predicted by the model.Monosaccharide composition of TFPS was fucose,rhamnose,arabinose,xylose,galactose,glucose,mannose,fructose,ribose,galacturonic acid and glucuronic acid in a molar percent of 31.69,0.21,0.49,1.29,35.82,0.97,1.63,18.34,7.88,1.06 and 0.63.Compared to other extraction methods,SFE could achieve higher yield and gain more types of monosaccharide.展开更多
The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste...The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.展开更多
In the present study,the effect of reduction of cutting fluid consumption on the surface quality and tool wear was studied.Mathematical models were developed to predict the surface roughness using response surface met...In the present study,the effect of reduction of cutting fluid consumption on the surface quality and tool wear was studied.Mathematical models were developed to predict the surface roughness using response surface methodology(RSM).Analysis of variance(ANOVA)was used to investigate the significance of the developed regression models.The results showed that the coefficient of determination values(R^2)for the developed models was 97.46%for dry,89.32%for flood mode(FM),and 99.44%for MQL,showing the high accuracy of fitted models.Also,under the minimum quantity lubrication(MQL)condition,the surface roughness improved by 23%−44%and 19%−41%compared with dry and FM,respectively,and the SEM images of machined surface proved the statement.The prepared SEM images of tool rake face also showed a considerable decrease in adhesion wear.Built-up edge and built-up layer were the two main products of the adhesion wear,and energy-dispersive X-ray spectroscopy(EDX)analysis of specific points on the tool faces helped to discover the chemical compositions of adhered materials.By changing dry and FM to MQL mode,dominant mechanism of tool wear in machining aluminum alloy was significantly decreased.Breakage wear that led to early failure of cutting edge was also controlled by MQL technique.展开更多
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
文摘Platycodon grandiflorum A.DC.(PAl)C)root was taken as experiment material to extract polysaccharide.On the base of single factor tests(extraction time,extraction temperature,liquid-solid ratio,solvent pH value and NaCl concentration),the study concluded the main factors affecting the extraction of PADC polysaccharide,which are liquid-solid ratio,extraction time and extraction temperature.Then through central-composite test design,the extraction conditions were concluded as liquid-solid ratio 34.43,extraction time 89.83 min and extraction temperature 52.47℃.By means of validation experiments,the adequacy of this model was confirmed.
基金Project(2017YFC0602902) supported by the National Science and Technology Pillar Program during the 13th Five-Year Plan Period,ChinaProject(2015CX005) supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts445) supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
基金Projects(51704028,51574036)supported by the National Natural Science Foundation of China。
文摘The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.
基金Project(50734007) supported by the National Natural Science Foundation of China
文摘In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.
基金Project(2009BSXT022) supported by the Dissertation Innovation Foundation of Central South University, ChinaProject(07JJ4016) supported by Natural Science Foundation of Hunan Province, ChinaProject(U0937604) supported by National Natural Science Foundation of China
文摘To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.
基金supported by the National Natural Science Foundation of China(71702072 71811540414+2 种基金 71573115)the Natural Science Foundation for Jiangsu Institutions(BK20170810)the Ministry of Education of Humanities and Social Science Planning Fund(18YJA630008)
文摘Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.
基金Project(2013AA064003)supported by the National High Technology Research and Development Program of ChinaProject(2012HB008)supported by Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province,China
文摘The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.
基金supported by the TUBITAK(Scientific and Technological Research Council of Turkey) under the Project No:106M177
文摘Some effective parameters on the copper extraction from Kiire chalcopyrite concentrate were optimized by using response surface methodology (RSM). Experiments designed by RSM were carried out in the presence of ammonium persulfate (APS) and different types of impeller in an autoclave system. Ammonium persulfate concentration and leaching temperature were defined numerically and three types of impellers were defined categorically as independent variables using experimental design software. The optimum condition for copper extraction from the chalcopyrite concentrate is found to be ammonium persulfate concentration of 277.77 kg/m3, leaching temperature of 389.98 K and wheel type of impeller. The proposed model equation using RSM has shown good agreement with the experimental data, with correlation coefficients R2 and RaZaj for the model as 0.89 and 0.84, respectively.
文摘In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.
基金Financial assistance from Defence Research and Development Organization(DRDO)
文摘The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金supported by a key research grant "The application and Utilization of Tea (Camellia sinensis) Flowers" from the 2013 Zhejiang Province
文摘Polysaccharide production from tea flower(TFPS) was carried out using supercritical fluid extraction(SFE).Response surface methodology(RSM),based on a five level,four variable small central composite design,was employed to obtain the best possible combination of extraction time,pressure,temperature and ethanol content of modifier for maximum production.The optimum conditions were as follows:extraction time of 170 min,pressure of45 MPa,temperature of 75 ℃,and 50% aqueous ethanol solution as modifier.Under these conditions,the experimental yield was 6.56 ± 0.37%,which was similar to the value predicted by the model.Monosaccharide composition of TFPS was fucose,rhamnose,arabinose,xylose,galactose,glucose,mannose,fructose,ribose,galacturonic acid and glucuronic acid in a molar percent of 31.69,0.21,0.49,1.29,35.82,0.97,1.63,18.34,7.88,1.06 and 0.63.Compared to other extraction methods,SFE could achieve higher yield and gain more types of monosaccharide.
基金supported by the Second Stage of Brain Korea 21 Projectssupported (in part) by the Solomon Mechanics Inc
文摘The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.
文摘In the present study,the effect of reduction of cutting fluid consumption on the surface quality and tool wear was studied.Mathematical models were developed to predict the surface roughness using response surface methodology(RSM).Analysis of variance(ANOVA)was used to investigate the significance of the developed regression models.The results showed that the coefficient of determination values(R^2)for the developed models was 97.46%for dry,89.32%for flood mode(FM),and 99.44%for MQL,showing the high accuracy of fitted models.Also,under the minimum quantity lubrication(MQL)condition,the surface roughness improved by 23%−44%and 19%−41%compared with dry and FM,respectively,and the SEM images of machined surface proved the statement.The prepared SEM images of tool rake face also showed a considerable decrease in adhesion wear.Built-up edge and built-up layer were the two main products of the adhesion wear,and energy-dispersive X-ray spectroscopy(EDX)analysis of specific points on the tool faces helped to discover the chemical compositions of adhered materials.By changing dry and FM to MQL mode,dominant mechanism of tool wear in machining aluminum alloy was significantly decreased.Breakage wear that led to early failure of cutting edge was also controlled by MQL technique.