The interaction functions of electrically coupled Hindmarsh–Rose(HR) neurons for different firing patterns are investigated in this paper.By applying the phase reduction technique,the phase response curve(PRC) of...The interaction functions of electrically coupled Hindmarsh–Rose(HR) neurons for different firing patterns are investigated in this paper.By applying the phase reduction technique,the phase response curve(PRC) of the spiking neuron and burst phase response curve(BPRC) of the bursting neuron are derived.Then the interaction function of two coupled neurons can be calculated numerically according to the PRC(or BPRC) and the voltage time course of the neurons.Results show that the BPRC is more and more complicated with the increase of the spike number within a burst,and the curve of the interaction function oscillates more and more frequently with it.However,two certain things are unchanged:Φ = 0,which corresponds to the in-phase synchronization state,is always the stable equilibrium,while the anti-phase synchronization state with Φ = 0.5 is an unstable equilibrium.展开更多
The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic perform...The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic performance of Podocarpus falcatus seedlings in Eucalyptus plantation, Pinus plantation, adjacent natural forest and clear-felled plantation site. P. falcatus seedlings exhibited differences in architecture between Eucalyptus and Pinus plantations. They had higher leaf area, shorter internode length and greater number of lateral branches in Eucalyptus plantation. At similar vapor pressure deficit (VPD), P. falcatus transpired much less than E. saligna, especially at higher VPDs. Analysis of fluorescence parameters in the leaves showed no significant differences in the level of dark-adapted and light-adapted fluorescence yield (Fv/Fm and ΔF/Fm′, respectively), electron transport rate (ETR) and nonphotochemical quenching (NPQ) among seedlings grown inside plantations and adjacent natural forest, indicating similar photosynthetic performance. Nevertheless, there was evidence of photoinhibition in P. falcatus in the clear-felled site which had low fluorescence yield but high values of NPQ as protection from photoamage. The light response curves of ETR, NPQ and ΔF/Fm′ showed similar light saturation behavior among the seedlings grown inside plantations and natural forest and suggested a sequence of light-adapted to shade-adapted behavior in Natural forest 〉 Eucalyptus plantation 〉 Pinus plantation. The results show the structural flexibility, better water-use and adaptability of P. falcatus in its use of the understory environment of plantation species.展开更多
The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC....The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC.The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator.KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively.CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC.Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light,reflecting the environmental light-dark cycle.KaiA and CikA can sense external signals by detecting the oxidation state of quinone.However,the entrainment mechanism is far from clear.We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA,with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals.We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay,respectively.The time of oxidized quinone pulse addition plays a key role in the phase shifts.The combination of KaiA and CikA is beneficial to the generation of entrainment,and the increase of signal intensity reduces the entrainment phase.This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272065 and 11472061)
文摘The interaction functions of electrically coupled Hindmarsh–Rose(HR) neurons for different firing patterns are investigated in this paper.By applying the phase reduction technique,the phase response curve(PRC) of the spiking neuron and burst phase response curve(BPRC) of the bursting neuron are derived.Then the interaction function of two coupled neurons can be calculated numerically according to the PRC(or BPRC) and the voltage time course of the neurons.Results show that the BPRC is more and more complicated with the increase of the spike number within a burst,and the curve of the interaction function oscillates more and more frequently with it.However,two certain things are unchanged:Φ = 0,which corresponds to the in-phase synchronization state,is always the stable equilibrium,while the anti-phase synchronization state with Φ = 0.5 is an unstable equilibrium.
文摘The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic performance of Podocarpus falcatus seedlings in Eucalyptus plantation, Pinus plantation, adjacent natural forest and clear-felled plantation site. P. falcatus seedlings exhibited differences in architecture between Eucalyptus and Pinus plantations. They had higher leaf area, shorter internode length and greater number of lateral branches in Eucalyptus plantation. At similar vapor pressure deficit (VPD), P. falcatus transpired much less than E. saligna, especially at higher VPDs. Analysis of fluorescence parameters in the leaves showed no significant differences in the level of dark-adapted and light-adapted fluorescence yield (Fv/Fm and ΔF/Fm′, respectively), electron transport rate (ETR) and nonphotochemical quenching (NPQ) among seedlings grown inside plantations and adjacent natural forest, indicating similar photosynthetic performance. Nevertheless, there was evidence of photoinhibition in P. falcatus in the clear-felled site which had low fluorescence yield but high values of NPQ as protection from photoamage. The light response curves of ETR, NPQ and ΔF/Fm′ showed similar light saturation behavior among the seedlings grown inside plantations and natural forest and suggested a sequence of light-adapted to shade-adapted behavior in Natural forest 〉 Eucalyptus plantation 〉 Pinus plantation. The results show the structural flexibility, better water-use and adaptability of P. falcatus in its use of the understory environment of plantation species.
基金Project supported by the National Natural Science Foundation of China(Grant No.11672177).
文摘The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals.The cyanobacteria circadian clock is the simplest one,which is composed of the proteins KaiA,KaiB and KaiC.The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator.KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively.CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC.Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light,reflecting the environmental light-dark cycle.KaiA and CikA can sense external signals by detecting the oxidation state of quinone.However,the entrainment mechanism is far from clear.We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA,with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals.We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay,respectively.The time of oxidized quinone pulse addition plays a key role in the phase shifts.The combination of KaiA and CikA is beneficial to the generation of entrainment,and the increase of signal intensity reduces the entrainment phase.This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.