To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ...To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.展开更多
This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew(PFGS)plates.The effective material properties of...This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew(PFGS)plates.The effective material properties of the PFGS plates are obtained from the modified power-law equations in which gradation varies through the thickness of the PFGS plate.A nonlinear finite element(FE)formulation for the overall PFGS plate is derived by adopting first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinear strain displacement relations.The governing equations of the PFGS plate are derived using the principle of virtual work.The direct iterative method and Newmark’s integration technique are espoused to solve nonlinear mathematical relations.The influences of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the PFGS plate for different skew angles are studied in various parameters.The effects of volume fraction grading index and skew angle on the plate’s nonlinear dynamic responses for various porosity distributions are illustrated in detail.展开更多
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele...In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.展开更多
In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(...In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.展开更多
In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mend...An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not itemtive circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.展开更多
This paper has an objective to show a developed quantitative criterion,based in two mathematical variables that explicit the deviation degree of a normal situation,applying simultaneously data from terminal impedances...This paper has an objective to show a developed quantitative criterion,based in two mathematical variables that explicit the deviation degree of a normal situation,applying simultaneously data from terminal impedances and frequency response.Based in more than 100-measured equipment,of different applications(step-up transformer,transmission transformer,etc.,),for a period of 10 years,the work presents some examples of practical application of this methodology in Brazilian Electrical System.展开更多
A predator-prey model with prey dispersal and Holling type-Ⅱ functional response is investigated.In this model,the time delay due to the gestation of the predator and stagestructure for the predator are considered.By...A predator-prey model with prey dispersal and Holling type-Ⅱ functional response is investigated.In this model,the time delay due to the gestation of the predator and stagestructure for the predator are considered.By analyzing the corresponding characteristic equations,the local stability of each of the nonnegative equilibria is discussed.The existence of Hopf bifurcations at the positive equilibrium is established.By using Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions are obtained for the global stability of the positive equilibrium,the nonnegative boundary equilibrium and the trivial equilibrium of the model,respectively.Numerical simulations are carried out to illustrate the main results.展开更多
基金Project(2009BSXT022) supported by the Dissertation Innovation Foundation of Central South University, ChinaProject(07JJ4016) supported by Natural Science Foundation of Hunan Province, ChinaProject(U0937604) supported by National Natural Science Foundation of China
文摘To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.
文摘This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew(PFGS)plates.The effective material properties of the PFGS plates are obtained from the modified power-law equations in which gradation varies through the thickness of the PFGS plate.A nonlinear finite element(FE)formulation for the overall PFGS plate is derived by adopting first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinear strain displacement relations.The governing equations of the PFGS plate are derived using the principle of virtual work.The direct iterative method and Newmark’s integration technique are espoused to solve nonlinear mathematical relations.The influences of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the PFGS plate for different skew angles are studied in various parameters.The effects of volume fraction grading index and skew angle on the plate’s nonlinear dynamic responses for various porosity distributions are illustrated in detail.
文摘In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.
基金supported by the National Science Foundation of China(61561016 61861008+4 种基金 11603041)the Guangxi Natural Science Foundation Project(2018JJA170090)the Innovation Project of Guet Graduate Education(2018YJCX19 2018YJCX31)Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(DH201707)
文摘In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.
基金Project(2006AA04Z405)supported by the National High Technology Research and Development Program of ChinaProject(3102019)supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
基金Project(50378036) supported by the National Natural Science Foundation of China Project (200503) supported by the Foundation ofCommunications Department of Hunan Province, China
文摘An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not itemtive circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.
文摘This paper has an objective to show a developed quantitative criterion,based in two mathematical variables that explicit the deviation degree of a normal situation,applying simultaneously data from terminal impedances and frequency response.Based in more than 100-measured equipment,of different applications(step-up transformer,transmission transformer,etc.,),for a period of 10 years,the work presents some examples of practical application of this methodology in Brazilian Electrical System.
基金Supported by the Social Science Foundation of Hebei Province(HB23TJO03)。
文摘A predator-prey model with prey dispersal and Holling type-Ⅱ functional response is investigated.In this model,the time delay due to the gestation of the predator and stagestructure for the predator are considered.By analyzing the corresponding characteristic equations,the local stability of each of the nonnegative equilibria is discussed.The existence of Hopf bifurcations at the positive equilibrium is established.By using Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions are obtained for the global stability of the positive equilibrium,the nonnegative boundary equilibrium and the trivial equilibrium of the model,respectively.Numerical simulations are carried out to illustrate the main results.