In dielectrometry,traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities.For a special kind of structure(a rotating resonant cavity),the body of revolution finite-element...In dielectrometry,traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities.For a special kind of structure(a rotating resonant cavity),the body of revolution finite-element method(BOR-FEM)is employed to calculate the resonant parameters and dielectric parameters.In this paper,several typical resonant structures are selected for analysis and verification.Compared with the resonance parameter values in the literature and the simulation results of commercial software,the error of the BOR-FEM calculation is less than 0.9%and a single solution time is less than 1 s.Reentrant coaxial resonant cavities loaded with dielectric materials are analyzed using this method and compared with simulation results,showing good agreement.Finally,in this paper,the established BOR-FEM method is successfully applied with a machined cavity for the accurate measurement of the complex dielectric constant of dielectric materials.The test specimens were machined from polytetrafluoroethylene,fused silica and Al_(2)O_(3),and the test results showed good agreement with the literature reference values.展开更多
Based on excitation-resonance mass testing principle, a proper experiment testing system is designed for annular parts. The dynamics characters of the axis sleeve, which is made of a new Mn-Cu alloy and used as a vibr...Based on excitation-resonance mass testing principle, a proper experiment testing system is designed for annular parts. The dynamics characters of the axis sleeve, which is made of a new Mn-Cu alloy and used as a vibration reductor in high acceleration rotary testing machine for fusee, is investigated. The relationship between stiffness coefficient and utilizing frequency is obtained, and the simplified dynamics model of crystal is established From the viewpoint of crystal microstructure of the Mn-Cu alloy, the experiment result is analyzed by the viscoelastic theory, and the characters of stress and strain in the condition of high frequency are discussed. The results indicate that the Mn-Cu alloy annular parts are fit to be used on the high accleration rotary testing machine for fusee.展开更多
In the measurement of damping material's dynamic mechanical performance(DMP) using flexural resonating cantilever beam method,the specimen's adhesive characteristic influences the test precision and accuracy. ...In the measurement of damping material's dynamic mechanical performance(DMP) using flexural resonating cantilever beam method,the specimen's adhesive characteristic influences the test precision and accuracy. Taking its effect into account,the improved measurement equations based on the resonance method are presented. The simulated results show that,for the sake of weakening the adhesive's influence on the measured results,the adhesive should be spreaded as thin as possible when specimen is prepared,the adhesive's density and loss factor should be selected as small as possible also,and its Young's modulus should be selected according to the damping material being measured;the same adhesion condition effects differently on the test results of different damping materials,i.e. the error due to the adhesive is more inconspicuous if the damping layer has bigger thickness,modulus,loss factor and a certain density according to the damping material being measured. These conclusions provide theoretical basis for selecting adhesive,improving adhesion technology,and designing specimen.展开更多
基金the National Natural Science Foundation of China(Grant No.62001083)the Guangdong Provincial Key Research and Development Project,China(Grant No.2020B010179002).
文摘In dielectrometry,traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities.For a special kind of structure(a rotating resonant cavity),the body of revolution finite-element method(BOR-FEM)is employed to calculate the resonant parameters and dielectric parameters.In this paper,several typical resonant structures are selected for analysis and verification.Compared with the resonance parameter values in the literature and the simulation results of commercial software,the error of the BOR-FEM calculation is less than 0.9%and a single solution time is less than 1 s.Reentrant coaxial resonant cavities loaded with dielectric materials are analyzed using this method and compared with simulation results,showing good agreement.Finally,in this paper,the established BOR-FEM method is successfully applied with a machined cavity for the accurate measurement of the complex dielectric constant of dielectric materials.The test specimens were machined from polytetrafluoroethylene,fused silica and Al_(2)O_(3),and the test results showed good agreement with the literature reference values.
文摘Based on excitation-resonance mass testing principle, a proper experiment testing system is designed for annular parts. The dynamics characters of the axis sleeve, which is made of a new Mn-Cu alloy and used as a vibration reductor in high acceleration rotary testing machine for fusee, is investigated. The relationship between stiffness coefficient and utilizing frequency is obtained, and the simplified dynamics model of crystal is established From the viewpoint of crystal microstructure of the Mn-Cu alloy, the experiment result is analyzed by the viscoelastic theory, and the characters of stress and strain in the condition of high frequency are discussed. The results indicate that the Mn-Cu alloy annular parts are fit to be used on the high accleration rotary testing machine for fusee.
基金Sponsored by the New Century Excellent Talent Project(NCET-06-0883)
文摘In the measurement of damping material's dynamic mechanical performance(DMP) using flexural resonating cantilever beam method,the specimen's adhesive characteristic influences the test precision and accuracy. Taking its effect into account,the improved measurement equations based on the resonance method are presented. The simulated results show that,for the sake of weakening the adhesive's influence on the measured results,the adhesive should be spreaded as thin as possible when specimen is prepared,the adhesive's density and loss factor should be selected as small as possible also,and its Young's modulus should be selected according to the damping material being measured;the same adhesion condition effects differently on the test results of different damping materials,i.e. the error due to the adhesive is more inconspicuous if the damping layer has bigger thickness,modulus,loss factor and a certain density according to the damping material being measured. These conclusions provide theoretical basis for selecting adhesive,improving adhesion technology,and designing specimen.