期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Residual oil evolution based on displacement characteristic curve 被引量:3
1
作者 Duanchuan Lyu Chengyan Lin +2 位作者 Lihua Ren Chunmei Dong Jinpeng Song 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期337-343,共7页
The purpose of this study was to determine the displacement and dynamic distribution characteristics of the remaining oil in the two development stages of water flooding and subsequent alkaline surfactant polymer(ASP)... The purpose of this study was to determine the displacement and dynamic distribution characteristics of the remaining oil in the two development stages of water flooding and subsequent alkaline surfactant polymer(ASP) flooding. The well pattern types in the water and ASP flooding stages are a longdistance determinant well pattern and short-distance five-point well pattern, respectively. The type A displacement characteristic curve can be obtained using the production data, and the slope of the straight-line section of the curve can reflect the displacement strength of the oil displacement agent. A numerical simulation was carried out based on the geological model. The results revealed that the injected water advances steadily with a large-distance determinant water-flooding well pattern. The single-well water production rate increases monotonically during water flooding. There is a significant positive correlation between the cumulative water-oil ratio and the formation parameter. Differential seepage between the oil and water phases is the main factor causing residual oil formation after water flooding, while the residual oil is still relatively concentrated. The effect of the chemical oildisplacement agent on improving the oil-water two-phase seepage flow has distinct stages during ASP flooding. The remaining oil production is extremely sporadic after ASP flooding. 展开更多
关键词 Water flooding ASP flooding Water-drive characteristic curve residue oil Thick oil layer
在线阅读 下载PDF
Study on the Effect of Catalyst Properties on Residue Hydroconversion 被引量:1
2
作者 Tong Fengya Yang Qinghe +2 位作者 Li Dadong Dai Lishun Deng Zhonghuo 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期1-7,共7页
The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch ... The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke. 展开更多
关键词 residue oil hydroconversion catalyst slurry phase mechanism
在线阅读 下载PDF
Micro-mechanisms of residual oil mobilization by viscoelastic fluids 被引量:3
3
作者 Zhang Lijuan Yue Xiang'an Guo Fenqiao 《Petroleum Science》 SCIE CAS CSCD 2008年第1期56-61,共6页
Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats, oil at pore corners and oil film adhered to pore walls, were studied. According to main pore structure characteristic... Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats, oil at pore corners and oil film adhered to pore walls, were studied. According to main pore structure characteristics and the fundamental morphological features of residual oil, four displacement models for residual oil were proposed, in which pore-scale flow behavior of viscoelastic fluid was analyzed by a numerical method and micro-mechanisms for mobilization of residual oil were discussed. Calculated results indicate that the viscoelastic effect enhances micro displacement efficiency and increases swept volume. For residual oil trapped in dead ends, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil by the displacing fluid, and consequently increasing swept volume. In addition, intense viscoelastic vortex has great stress, under which residual oil becomes small oil ganglia, and finally be carried into main channels. For residual oil at pore throats, its displacement mechanisms are similar to the oil trapped in dead ends. Vortices are developed in the depths of the throats and oil ganglia become smaller. Besides, viscoelastic fluid causes higher pressure drop on oil ganglia, as a driving force, which can overcome capillary force, consequently, flow direction can be changed and the displacing fluid enter smaller throats. For oil at pore corners, viscoelastic fluid can enhance displacement efficiency as a result of greater velocity and stress near the corners. For residual oil adhered to pore wall, viscoelastic fluid can provide a greater displacing force on the interface between viscoelastic fluid and oil, thus, making it easier to exceed the minimum interfacial tension for mobilizing the oil film. 展开更多
关键词 VISCOELASTIC chemical flooding displacement mechanism residual oil swept volume
在线阅读 下载PDF
Utilization mechanism of foam flooding and distribution situation of residual oil in fractured-vuggy carbonate reservoirs 被引量:3
4
作者 Yu-Chen Wen Ji-Rui Hou +6 位作者 Xiao-Li Xiao Chang-Ming Li Ming Qu Ya-jie Zhao Wei-Xin Zhong Tuo Liang Wei-Peng Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1620-1639,共20页
The development of fractured-vuggy carbonate reservoirs is extremely difficult because of the complex fractured-vuggy structure and strong heterogeneity.Foam flooding is a potential enhanced oil recovery(EOR)technolog... The development of fractured-vuggy carbonate reservoirs is extremely difficult because of the complex fractured-vuggy structure and strong heterogeneity.Foam flooding is a potential enhanced oil recovery(EOR)technology in fractured-vuggy carbonate reservoirs.Based on the similarity criterion,three types of 2D visual physical models of the fractured-vuggy structure were made by laser ablation technique,and a 3D visual physical model of the fractured-vuggy reservoir was made by 3D printing technology.Then the physical analog experiments of foam flooding were carried out in these models.The experimental results show that foam can effectively improve the mobility ratio,control the flow velocity of the fluid in different directions,and sweep complex fracture networks.The effect of foam flooding in fractures can be improved by increasing foam strength and enhancing foam stability.The effect of foam flooding in vugs can be improved by reducing the density of the foam and the interfacial tension between foam and oil.Three types of microscopic residual oil and three types of macroscopic residual oil can be displaced by foam flooding.This study verifies the EOR of foam flooding in the fractured-vuggy reservoir and provides theoretical support for the application of foam flooding in fractured-vuggy reservoirs. 展开更多
关键词 Fractured-vuggy reservoirs Foam flooding Physical model Residual oil Enhanced oil recovery(EOR)
在线阅读 下载PDF
Effect of petroleum chemical fraction and residual oil content in saline lacustrine organic-rich shale: A case study from the Paleogene Dongpu Depression of North China 被引量:2
5
作者 Chen-Xi Zhu Fu-Jie Jiang +9 位作者 Peng-Yuan Zhang Zhao Zhao Xin Chen Yu-Qi Wu Yuan-Yuan Chen Wei Wang Ze-Zhang Song Tao Hu Tian-Wu Xu Yong-Shui Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期649-669,共21页
Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing ha... Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing halite and gypsum. The effect of gypsum minerals on residual oil content and chemical fractionation remains unclear. In this study, shale samples with different gypsum contents were used in organic geochemical experiments, showing that the high total organic matter (TOC) content and type II kerogen leads to a high residual oil content, as shown by high values of volatile hydrocarbon (S1) and extractable organic matter (EOM). XRD and FE-SEM result indicate that the existence of gypsum in saline shale contributes to an enhanced pore space and a higher residual oil content in comparison to non-gypsum shale. Additionally, the increase in the gypsum mineral content leads to an increase in the saturated hydrocarbon percentage and a decrease in polar components percentage (resins and asphaltene). Furthermore, thermal simulation experiments on low-mature saline shale show that the percentage of saturated hydrocarbons in the residual oil is high and remains stable and that the storage space is mainly mesoporous (> 20 nm) in the oil expulsion stage. However, the saturated hydrocarbons percentage decreases rapidly, and oil exists in mesopores (> 20 nm and < 5 nm) in the gas expulsion stage. In general, gypsum is conducive to the development of pore space, the adsorption of hydrocarbons and the occurrence of saturated hydrocarbon, leading to large quantities of residual oil. The data in this paper should prove to be reliable for shale oil exploration in saline lacustrine basins. 展开更多
关键词 oil fractionation Residual oil Saline lacustrine shale The Dongpu Depression
在线阅读 下载PDF
Factors influencing oil recovery by surfactant-polymer flooding in conglomerate reservoirs and its quantitative calculation method 被引量:1
6
作者 Feng-Qi Tan Chun-Miao Ma +2 位作者 Jian-Hua Qin Xian-Kun Li Wen-Tao Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1198-1210,共13页
This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flood... This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery. 展开更多
关键词 Conglomerate reservoir Water flooding Surfactant-polymer flooding Residual oil type Influencing factor Enhanced oil recovery Computational model
在线阅读 下载PDF
Reservoir heterogeneity controls of CO_(2)-EOR and storage potentials in residual oil zones:Insights from numerical simulations 被引量:1
7
作者 Yan-Yong Wang Xiao-Guang Wang +4 位作者 Ren-Cheng Dong Wen-Chao Teng Shi-Yuan Zhan Guang-Yong Zeng Cun-Qi Jia 《Petroleum Science》 SCIE EI CSCD 2023年第5期2879-2891,共13页
Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it h... Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs. 展开更多
关键词 Residual oil zones CO_(2)injection Enhanced oil recovery Geologic sequestration
在线阅读 下载PDF
Experimental study on the oil production characteristics during the waterflooding of different types of reservoirs in Ordos Basin, NW China 被引量:1
8
作者 XIAO Wenlian YANG Yubin +7 位作者 LI Min LI Nong YOU Jingxi ZHAO Jinzhou ZHENG Lingli ZHOU Kerning REN Jitian WANG Yue 《Petroleum Exploration and Development》 CSCD 2021年第4期935-945,共11页
Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different dis... Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different displacement pressures using the NMR techniques to find out pore-scale oil occurrence state,oil production characteristics and residual oil distribution during the process of waterflooding and analyze the effect of pore structure and displacement pressure on waterflooding efficiency.Under bound water condition,crude oil mainly occurs in medium and large pores in the low-permeability sample,while small pores and medium pores are the main distribution space of crude oil in extra-low permeability and ultra-low permeability samples.During the waterflooding,crude oil in the medium and large pores of the three types of samples are preferentially produced.With the decrease of permeability of the samples,the waterflooding front sequentially shows uniform displacement,network displacement and finger displacement,and correspondingly the oil recovery factors decrease successively.After waterflooding,the residual oil in low-permeability samples is mainly distributed in medium pores,and appears in membranous and angular dispersed phase;but that in the extra-low and ultra-low permeability samples is mainly distributed in small pores,and appears in continuous phase formed by a bypass flow and dispersed phase.The low-permeability samples have higher and stable oil displacement efficiency,while the oil displacement efficiency of the extra-low permeability and ultra-low permeability samples is lower,but increases to a certain extent with the increase of displacement pressure. 展开更多
关键词 waterflooding characteristics oil occurrence state residual oil distribution NMR displacement efficiency Ordos Basin
在线阅读 下载PDF
Effects of Fe^(2+), Co^(2+) and Ni^(2+) Ions on Biological Methane Production from Residual Heavy Oil 被引量:1
9
作者 Liu Chunshuang Ma Wenjuan +2 位作者 Zhao Dongfeng Jia Kuili Zhao Chaocheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第2期32-38,共7页
On the basis of single factor tests, the effect of trace elements—Fe2+, Co2+ and Ni2+ ions—on biological methane production from heavy oil was investigated by the response surface method. A three-level Box-Behnken d... On the basis of single factor tests, the effect of trace elements—Fe2+, Co2+ and Ni2+ ions—on biological methane production from heavy oil was investigated by the response surface method. A three-level Box-Behnken design was employed to study the relationship between the independent variables and the dependent variable by applying initial Fe2+, Co2+ and Ni2+ concentration as the independent variables(factors) and using the methane production after 270 days of cultivation as the dependent variable(response). A prediction model of quadramatic polynomial regression equation was obtained. The results showed that the methane production could be as high as 240.69 μmol after optimization compared with 235.74 μmol obtained under un-optimized condition. Furthermore, the microbial communities before and after biodegradation were analyzed by PCR-DGGE method. The dominant bands were recovered and sequenced. Three strains were obtained; the strain T1 has 97% similarity with Bacillus thermoamylovorans, the strain H3 has 97% similarity with Bacillus thermoamylovorans and the strain H4 has 99% similarity with Bacillus vietnamensis. 展开更多
关键词 residual heavy oil METHANE PCR-DGGE response surface method
在线阅读 下载PDF
Residue Upgrading in Slurry Phase over Ultra-fine NiMo/γ-Al_2O_3 Catalyst
10
作者 Tong Fengya Yang Qinghe +2 位作者 Li Dadong Dai Lishun Deng Zhonghuo 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第3期1-6,共6页
In this article, residual oil hydroconversion was studied in slurry phase in the presence of fine solid Ni Mo/γ-Al2O3 catalyst and the effects of operating conditions were carefully studied. The results showed that r... In this article, residual oil hydroconversion was studied in slurry phase in the presence of fine solid Ni Mo/γ-Al2O3 catalyst and the effects of operating conditions were carefully studied. The results showed that residue conversion was only affected by the reaction temperature and reaction time. The coke yield increased with a higher reaction temperature, a bigger catalyst particle size, a longer reaction time, a lower initial hydrogen pressure and a lower catalyst concentration. Heteroatoms removal rate increased with a higher reaction temperature, a longer reaction time, a higher initial hydrogen pressure, a higher catalyst concentration, and a smaller catalyst particle size. The role of catalyst in the slurry bed technology was discussed and its function could be stated as follows: the metal was applied to activate the hydrogen atoms for removing heteroatoms and saturating aromatics, while the support of the catalyst was used to prevent the mesophase coalescence for reducing coke formation. 展开更多
关键词 slurry phase residual oil NiMo/γ- Al2O3 UPGRADING mechanism
在线阅读 下载PDF
Study on Residual Oil HDS Process with Mechanism Model and ANN Model
11
作者 Ma Chengguo Weng Huixin (Research Center of Petroleum Processing, ECUST, Shanghai 200237) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第1期39-43,共5页
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur... Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process. 展开更多
关键词 residual oil hydrodesulfurization (HDS) mechanism model artificial neural network (ANN) model
在线阅读 下载PDF
Dynamic evolution characteristics of the “source-reservoir” integration of gray marl and its geological significance to unconventional gas: Insights from pyrolysis experiments 被引量:1
12
作者 Zhang-Hu Wang Zhong-Liang Ma +3 位作者 Lun-Ju Zheng Jun-Yu Wang Zhi-Gang Wen Chen-Yang Si 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期705-720,共16页
The marl–limestone rhythmic strata of the Permian Maokou Formation have been identified as hosts of unconventional gas reservoirs with “source–reservoir” integration. The lack of research on the pore structure evo... The marl–limestone rhythmic strata of the Permian Maokou Formation have been identified as hosts of unconventional gas reservoirs with “source–reservoir” integration. The lack of research on the pore structure evolution of organic-rich carbonate rock restricts gas exploration of these strata. Here, pyrolysis experiments were performed on the Mao-1 carbonate to simulate hydrocarbon generation, expulsion and diagenesis in gray marl from low maturity to overmaturity. The pore structure of this marl is dominated by mesopores and macropores, and the proportion of macropores increases gradually with temperature. The macropores are mainly pores in the organic matter and shrinkage microcracks. Additionally, micropores and mesopores, dominated by clay mineral interlayer pores and pyrite intergranular pores, are developed in the high mature stage and subsequently compressed in the overmature stage. The main contributors to the specific surface area are micropores and mesopores, which are conducive to natural gas adsorption. After the same pyrolysis treatment, the available porosity of grey marl is higher than that of marine/lacustrine shales, and exhibits an obvious decrease in the low mature–mature stage. These suggest that the abundant residual oil generated blocked the organic and inorganic pores in the gray marl, providing a pivotal material foundation for the gas generation. Micropores and mesopores developed during the high mature stage ensure the gas accumulation and preservation. The above indicate the organic-rich carbonate at the high mature–overmature stage (Ro = 1.7%–2.5%) in the Sichuan Basin may be a favorable exploration horizon for unconventional oil and gas. 展开更多
关键词 Residual oil Organic pores Porosity SEPIOLITE Hydrocarbon generation
在线阅读 下载PDF
白石湖煤加氢液化过程含氮化合物转化行为研究
13
作者 刘敏 陈贵锋 +3 位作者 赵鹏 赵天博 史权 王吉坤 《煤质技术》 2021年第6期36-43,共8页
对煤加氢液化过程中含氮化合物的转化行为及在气、液、固三相产物中的赋存形态进行研究,可为低阶煤的高效洁净利用奠定理论基础。在0.01 t/d连续试验装置完成新疆白石湖煤加氢液化连续试验,采用微量硫氮分析仪、氮化学发光气相色谱仪(GC... 对煤加氢液化过程中含氮化合物的转化行为及在气、液、固三相产物中的赋存形态进行研究,可为低阶煤的高效洁净利用奠定理论基础。在0.01 t/d连续试验装置完成新疆白石湖煤加氢液化连续试验,采用微量硫氮分析仪、氮化学发光气相色谱仪(GC-NCD)、电喷雾电离(ESI)傅里叶变换离子回旋共振质谱(FT-ICR MS)和X射线光电子能谱(XPS)对液化油及残渣中的含氮化合物进行分子识别表征。结果表明,原煤中含量较多的季氮,在液化条件下转化为NH3,迁移到气相产物中,液化残渣中以稠环形态的吡啶氮和吡咯氮为主。氮在气体、低分油、高分油、残渣的比例分别为35.21%、24.41%、19.79%、20.59%。小于170℃液化油馏分含氮化合物含量由高到低排序为:苯胺类>吲哚类>喹啉类>脂肪胺类。大于170℃液化油馏分含氮化合物从N_(1)到N_(X)O_(X)(X=1-2)均存在,主要是苯并咔唑带环烷侧链和苯并咔唑带环烷醚链两类含氮化合物。 展开更多
关键词 低阶煤 加氢液化 含氮化合物 转化行为 赋存形态 液化油馏分 分子识别表征 液化残渣
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部