期刊文献+
共找到867篇文章
< 1 2 44 >
每页显示 20 50 100
Reliability estimation and remaining useful lifetime prediction for bearing based on proportional hazard model 被引量:7
1
作者 王鹭 张利 王学芝 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4625-4633,共9页
As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenanc... As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction. 展开更多
关键词 PROGNOSTICS reliability estimation remaining useful life proportional hazard model
在线阅读 下载PDF
Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling 被引量:8
2
作者 CAI Zhongyi WANG Zezhou +2 位作者 CHEN Yunxiang GUO Jiansheng XIANG Huachun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期194-205,共12页
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipmen... Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction. 展开更多
关键词 remaining useful life(RUL)prediction Wiener process dual nonlinearity measurement error individual difference
在线阅读 下载PDF
Remaining useful life estimation based on Wiener degradation processes with random failure threshold 被引量:17
3
作者 TANG Sheng-jin YU Chuan-qiang +3 位作者 FENG Yong-bao XIE Jian GAO Qin-he SI Xiao-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2230-2241,共12页
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail... Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation. 展开更多
关键词 condition based maintenance remaining useful life wiener process random failure threshold BAYESIAN EM algorithm
在线阅读 下载PDF
Remaining useful life prediction for a nonlinear multi-degradation system with public noise 被引量:6
4
作者 ZHANG Hanwen CHEN Maoyin ZHOU Donghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期429-435,共7页
To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and t... To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and these parts or components are working in the same environment, thus the degradations of these parts or components will be influenced by common factors. To describe such a phenomenon in degradations, a multi-degradation model with public noise is proposed. To identify the degradation states and the unknown parameters, an iterative estimation method is proposed by using the Kalman filter and the expectation maximization(EM) algorithm. Next, with known thresholds,the RUL of each degradation can be predicted by using the first hitting time(FHT). In addition, the RUL of the whole system can be obtained by a Copula function. Finally, a practical case is used to demonstrate the method proposed. 展开更多
关键词 remaining useful life(RUL) multi-degradation system public noise nonlinear degradation process
在线阅读 下载PDF
Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold 被引量:8
5
作者 WANG Zezhou CHEN Yunxiang +2 位作者 CAI Zhongyi GAO Yangjun WANG Lili 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期415-431,共17页
The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that t... The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that the failure threshold is a fixed value,as they have difficulty in reflecting the random variation of the failure threshold. In connection with the inadequacies of the existing research, an in-depth analysis is carried out to study the effect of the random failure threshold(RFT) on the prediction results for the RUL. First, a nonlinear degradation model with unit-to-unit variability and measurement error is established based on the nonlinear Wiener process. Second, the expectation-maximization(EM) algorithm is used to solve the estimated values of the parameters of the prior degradation model, and the Bayesian method is used to iteratively update the posterior distribution of the random coefficients. Then, the effects of three types of RFT constraint conditions on the prediction results for the RUL are analyzed, and the probability density function(PDF) of the RUL is derived. Finally,the degradation data of aero-turbofan engines are used to verify the correctness and advantages of the method. 展开更多
关键词 remaining useful life(RUL)prediction random failure threshold(RFT) nonlinear WIENER process measurement error unit-to-unit VARIABILITY
在线阅读 下载PDF
Degradation data-driven approach for remaining useful life estimation 被引量:2
6
作者 Zhiliang Fan Guangbin Liu +2 位作者 Xiaosheng Si Qi Zhang Qinghua Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期173-182,共10页
Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL es... Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL estimation approach under the collaboration between Bayesian updating and expectation maximization (EM) algorithm. Firstly, we utilize an exponential-like degradation model to describe equipment degradation process and update stochastic parameters in the model via Bayesian approach. Based on the Bayesian updating results, both probability distribution of the RUL and its point estimation can be derived. Secondly, based on the monitored degradation data to date, we give a parameter estimation approach for non-stochastic parameters in the degradation model and prove that the obtained estimation is unique and optimal in each iteration. Finally, a numerical example and a practical case study for global positioning system (GPS) receiver are provided to show that the presented approach can model degradation process and achieve RUL estimation effectively and generate better results than a previously reported approach in literature. 展开更多
关键词 RELIABILITY DEGRADATION remaining useful life (RUL) prognostics global positioning system (GPS).
在线阅读 下载PDF
Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors 被引量:24
7
作者 唐圣金 郭晓松 +3 位作者 于传强 周志杰 周召发 张邦成 《Journal of Central South University》 SCIE EI CAS 2014年第12期4509-4517,共9页
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad... Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction. 展开更多
关键词 remaining useful life Wiener based degradation process measurement error nonlinear maximum likelihood estimation Bayesian method
在线阅读 下载PDF
Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data 被引量:4
8
作者 WANG Fengfei TANG Shengjin +3 位作者 SUN Xiaoyan LI Liang YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期247-258,共12页
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n... Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction. 展开更多
关键词 remaining useful life(RUL)prediction imperfect prior information failure time data NONLINEAR random coefficient regression(RCR)model
在线阅读 下载PDF
Remaining useful life prediction of aero-engines based on random-coefficient regression model considering random failure threshold 被引量:2
9
作者 WANG Fengfei TANG Shengjin +3 位作者 LI Liang SUN Xiaoyan YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期530-542,共13页
Remaining useful life(RUL)prediction is one of the most crucial components in prognostics and health management(PHM)of aero-engines.This paper proposes an RUL prediction method of aero-engines considering the randomne... Remaining useful life(RUL)prediction is one of the most crucial components in prognostics and health management(PHM)of aero-engines.This paper proposes an RUL prediction method of aero-engines considering the randomness of failure threshold.Firstly,a random-coefficient regression(RCR)model is used to model the degradation process of aeroengines.Then,the RUL distribution based on fixed failure threshold is derived.The prior parameters of the degradation model are calculated by a two-step maximum likelihood estimation(MLE)method and the random coefficient is updated in real time under the Bayesian framework.The failure threshold in this paper is defined by the actual degradation process of aeroengines.After that,a expectation maximization(EM)algorithm is proposed to estimate the underlying failure threshold of aeroengines.In addition,the conditional probability is used to satisfy the limitation of failure threshold.Then,based on above results,an analytical expression of RUL distribution of aero-engines based on the RCR model considering random failure threshold(RFT)is derived in a closed-form.Finally,a case study of turbofan engine is used to demonstrate the effectiveness and superiority of the RUL prediction method and the parameters estimation method of failure threshold proposed. 展开更多
关键词 AERO-ENGINE remaining useful life(RUL) random failure threshold(RFT) random-coefficient regression(RCR) parameters estimation
在线阅读 下载PDF
A model to determining the remaining useful life of rotating equipment,based on a new approach to determining state of degradation 被引量:3
10
作者 Saeed RAMEZANI Alireza MOINI +1 位作者 Mohamad RIAHI Adolfo Crespo MARQUEZ 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2291-2310,共20页
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th... Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used. 展开更多
关键词 remaining useful life(RUL) prognostics and health management(PHM) autoregressive markov regime switching(ARMRS) health index(HI) Dempster-Shafer theory fuzzy c-means(FCM) Kurtosis-entropy DEGRADATION
在线阅读 下载PDF
煤矿设备全寿命周期健康管理与智能维护研究综述 被引量:4
11
作者 曹现刚 段雍 +8 位作者 王国法 赵江滨 任怀伟 赵福媛 杨鑫 张鑫媛 樊红卫 薛旭升 李曼 《煤炭学报》 北大核心 2025年第1期694-714,共21页
近年来,随着煤矿智能化技术快速发展,煤矿设备全寿命周期健康管理与智能维护技术作为实现煤矿设备运行健康状态智能感知、智能识别和维护决策,保障煤矿设备高效可靠运行的重要手段,相关研究受到了广泛关注。然而,目前煤矿仍然以事后维... 近年来,随着煤矿智能化技术快速发展,煤矿设备全寿命周期健康管理与智能维护技术作为实现煤矿设备运行健康状态智能感知、智能识别和维护决策,保障煤矿设备高效可靠运行的重要手段,相关研究受到了广泛关注。然而,目前煤矿仍然以事后维修、预防维修等方式为主,难以满足煤矿设备的高可靠性需求。基于此,综述了煤矿设备全寿命周期健康管理与智能维护的研究进展以推动其在煤矿的应用,阐释了煤矿设备全寿命周期的健康管理与智能维护内涵,给出了煤矿设备健康管理与智能维护总框架。从煤矿设备大数据管理方法、健康状态评估方法、剩余使用寿命预测方法、智能维护决策方法4个方面分析了煤矿设备健康管理与智能维护方法研究现状。在煤矿设备大数据管理方面,总结了煤矿设备多源信息感知、大数据清洗、大数据集成及存储方法的最新研究成果,深入分析对比了相关方法的应用情况,指出了现阶段煤矿设备大数据管理存在的挑战。在煤矿设备健康状态评估方面,从煤矿设备监测信号特征提取、健康状态等级划分、健康状态评估模型构建3个方面出发探讨了煤矿设备健康状态评估关键方法最新发展现状,对比分析了不同方法的优缺点,总结了该领域面临的难题。在煤矿设备剩余使用寿命预测方面,分析了统计模型方法、物理模型方法和数据驱动方法在煤矿设备剩余使用寿命预测上的优缺点,指出了煤矿设备剩余使用寿命方法存在的问题。在煤矿设备智能维护决策方面,明确了煤矿设备预测性维护决策主要步骤,对比分析了煤矿设备智能维护方法最新研究成果及其优缺点,归纳了现阶段煤矿设备智能维护方法研究的不足。结合煤矿设备全寿命周期健康管理与智能维护面临的挑战及发展要求,从煤矿设备大数据管理方法、时变工况下设备健康评估方法、多因素影响下设备剩余使用寿命方法、煤矿设备多目标智能维护决策方法、健康管理与智能维护算法集成及系统开发等方面对煤矿设备健康管理与智能维护提出了展望,指明了煤矿设备健康管理与智能维护关键理论、方法的研究方向,为提升煤矿设备健康管理及智能维护水平,促进煤炭工业转型升级和高质量发展提供依据。 展开更多
关键词 煤矿设备 大数据管理 健康状态评估 剩余使用寿命预测 智能维护决策
在线阅读 下载PDF
基于DAE-BLS的锂离子电池剩余使用寿命预测方法 被引量:3
12
作者 张洪生 尚鑫磊 《计算机集成制造系统》 北大核心 2025年第3期1038-1047,共10页
为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的... 为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的健康因子(HI),并使用滑动时间窗口制备训练样本。其次,将样本输入DAE进行去噪处理。然后,将经过处理的样本输入BLS,预测电池RUL,并通过调整窗口大小和模型参数,得到最优模型。最后,利用MIT-Stanford电池退化数据集验证该方法的有效性。实验结果表明,相比于已有预测方法,所提方法在预测精度上具有更好的表现。 展开更多
关键词 锂离子电池 剩余使用寿命 健康因子 去噪自编码器 宽度学习系统
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
13
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
虚实结合的电池剩余使用寿命预测实验教学研究
14
作者 刘强 姜英姿 +4 位作者 种法力 王辉 戴前进 耿金萍 朱军 《实验技术与管理》 北大核心 2025年第7期246-252,共7页
该实验基于粒子群优化算法(PSO)对BP神经网络进行改进,利用BTS充放电测试仪对锂电池进行加速老化实验,从电池历史老化数据中提取健康因子,将其作为PSO-BP网络的输入,提高网络预测电池剩余使用寿命能力,最后利用多组电池的老化数据将传... 该实验基于粒子群优化算法(PSO)对BP神经网络进行改进,利用BTS充放电测试仪对锂电池进行加速老化实验,从电池历史老化数据中提取健康因子,将其作为PSO-BP网络的输入,提高网络预测电池剩余使用寿命能力,最后利用多组电池的老化数据将传统预测算法与优化的PSO-BP网络的预测精确度进行了对比。针对PSO算法易陷入局部最优陷阱与早熟收敛问题,选择非线性动态自适应惯性权重策略(IPSO)对算法再次进行改进,通过对比改进前后算法的预测效果,验证得出IPSO-BP算法更加优异。该实验过程可以使学生利用机器学习算法预测电池剩余使用寿命,采用虚实结合手段解决实际问题,提高实验的综合效果。 展开更多
关键词 电池剩余使用寿命 粒子群优化算法 虚实结合 健康因子
在线阅读 下载PDF
二次聚合个性化联邦的不同工况下滚动轴承寿命预测方法
15
作者 康守强 杨得济 +2 位作者 王玉静 王庆岩 谢金宝 《振动与冲击》 北大核心 2025年第2期254-266,共13页
针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题,提出一种二次聚合个性化联邦的滚动轴承寿命预测方法。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监... 针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题,提出一种二次聚合个性化联邦的滚动轴承寿命预测方法。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监督二元回归模型确定第一预测时间,构建分段退化标签;提出二次聚合个性化联邦学习算法,各用户构建改进的卷积神经网络-长短时记忆网络模型,并将其参数上传至服务端,服务端采用多任务学习框架,一次聚合多用户同种工况模型参数;在此基础上,利用批量归一化层参数统计信息计算一次聚合模型间相似度,引入权重更新机制指导模型参数二次聚合,减少不同工况模型间的负迁移现象并学习有益的全局知识,最终形成针对各工况的个性化预测模型。经试验验证,所提方法在保障数据隐私的前提下,可实现不同工况下滚动轴承寿命预测,并且预测的平均得分与不考虑数据隐私的集中式学习方法相当、相较于联邦平均算法平均得分提高0.2197。 展开更多
关键词 滚动轴承 多尺度特征提取 联邦学习 个性化 剩余寿命预测
在线阅读 下载PDF
谐波减速器MDBO-CNN-LSTM剩余使用寿命预测
16
作者 兰月政 刘彪 +3 位作者 石超 郭世杰 吕贺 唐术锋 《农业机械学报》 北大核心 2025年第2期533-543,共11页
针对谐波减速器剩余使用寿命预测退化节点难以选取、退化指标与物理解释性差、预测效果偏差较大等问题,提出了一维堆叠卷积自编码器融合深度卷积嵌入式聚类(SCAE-DCEC)提取退化点,并结合改进蜣螂优化算法(DBO)优化CNN-LSTM的谐波减速器... 针对谐波减速器剩余使用寿命预测退化节点难以选取、退化指标与物理解释性差、预测效果偏差较大等问题,提出了一维堆叠卷积自编码器融合深度卷积嵌入式聚类(SCAE-DCEC)提取退化点,并结合改进蜣螂优化算法(DBO)优化CNN-LSTM的谐波减速器剩余使用寿命预测方法。对振动信号进行一维堆叠卷积自编码器与深度卷积嵌入式聚类,解决了退化节点难以选取、退化指标与预测网络契合度差等难题;构建了基于SPM混沌映射、自适应概率阈值和差分变异扰动的改进蜣螂优化算法,并对其性能进行评估。利用MDBO对CNN-LSTM超参数进行优化,形成MDBO-CNN-LSTM的剩余使用寿命预测模型。在搭建的谐波减速器实验台进行加速寿命实验及预测验证,实验结果表明MDBO-CNN-LSTM训练后预测模型拟合优度明显高于CNN、LSTM、CNN-LSTM、DBO-CNN-LSTM网络、直接退化全卷积、直接退化的贝叶斯优化LSTM的RUL预测方法,其预测精度达到91.33%,且该方法对谐波减速器寿命后期退化趋势中的衰退特征具有较强的辨识能力。 展开更多
关键词 谐波减速器 退化点 SCAE-DCEC MDBO-CNN-LSTM 剩余使用寿命
在线阅读 下载PDF
基于IMM-PFF的锂离子电池剩余寿命预测
17
作者 王帅 李义婷 +2 位作者 陈黎飞 苏小红 周寿斌 《电子学报》 北大核心 2025年第5期1520-1532,共13页
针对单一容量衰退模型在锂离子电池剩余寿命(Remaining Useful Life,RUL)预测中工况泛化能力不足的问题,本文提出一种基于交互式多模型粒子流滤波(Interactive Multiple Model Particle Flow Filter,IMM-PFF)的预测方法.通过粒子流滤波... 针对单一容量衰退模型在锂离子电池剩余寿命(Remaining Useful Life,RUL)预测中工况泛化能力不足的问题,本文提出一种基于交互式多模型粒子流滤波(Interactive Multiple Model Particle Flow Filter,IMM-PFF)的预测方法.通过粒子流滤波对指数、多项式和生物模型进行协同状态估计,并基于交互式多模型框架动态融合多模型预测结果,从而自适应匹配电池衰退的多阶段特性.将美国NASA、马里兰大学等不同工况的锂离子电池退化数据集划分为3个时期,对本文的方法进行验证.结果表明,相比单一模型粒子滤波方法,IMM-PFF的容量预测均方根误差和剩余寿命预测误差分别降低24.3%和4.5%,为复杂工况下的锂离子电池寿命预测提供了高精度、强鲁棒性的新思路. 展开更多
关键词 锂离子电池 剩余寿命 粒子流滤波 交互式多模型 状态估计
在线阅读 下载PDF
考虑多部件间随机相关性的多阶段退化系统剩余寿命预测方法
18
作者 朱彦军 李可 +1 位作者 吴斌 石慧 《振动与冲击》 北大核心 2025年第10期311-322,共12页
多部件系统中部件之间退化可能存在不同程度的相互影响,使得多部件系统常常具有多阶段的退化特征。针对上述问题,本文考虑多部件系统各部件之间相互作用对退化模式的影响,提出一种基于维纳过程的连续退化双向随机相关影响的多阶段系统... 多部件系统中部件之间退化可能存在不同程度的相互影响,使得多部件系统常常具有多阶段的退化特征。针对上述问题,本文考虑多部件系统各部件之间相互作用对退化模式的影响,提出一种基于维纳过程的连续退化双向随机相关影响的多阶段系统退化建模与剩余寿命预测方法。首先利用突变点检测建立考虑双向随机相关影响的多阶段维纳过程退化模型,用来描述部件间随机相互影响对多部件系统退化过程产生的影响。其次为了反映各部件退化异质性,并考虑部件的退化速率是由自身固有的退化速率和与其相关的部件产生的退化率相互作用两部分组成,将系统各阶段的漂移系数和扩散系数定义为随机参数,运用期望最大化算法估计未知参数。最后采用贝叶斯算法更新后验参数分布,预测突变点位置,根据首达时间推导考虑各部件之间退化随机相关性的多阶段退化系统剩余寿命的表达式,并通过数值模拟和商用模块化航空推进系统仿真数据集验证了该方法的有效性。 展开更多
关键词 多部件 多阶段 剩余寿命预测 随机相关性 贝叶斯算法
在线阅读 下载PDF
贝叶斯变点检测的滚动轴承剩余寿命预测方法
19
作者 雷文平 邹冬良 +2 位作者 陈世金 黄广众 董星 《郑州大学学报(工学版)》 北大核心 2025年第6期93-101,共9页
针对滚动轴承运行退化呈现随机变点的多阶段特征,提出了一种新型的多阶段退化过程剩余寿命预测方法。首先,以离线历史数据估计各阶段模型的先验参数;其次,针对单一在线设备,通过贝叶斯变点检测方法进行变点的实时检测,采用贝叶斯更新方... 针对滚动轴承运行退化呈现随机变点的多阶段特征,提出了一种新型的多阶段退化过程剩余寿命预测方法。首先,以离线历史数据估计各阶段模型的先验参数;其次,针对单一在线设备,通过贝叶斯变点检测方法进行变点的实时检测,采用贝叶斯更新方法在变点出现前对第1阶段参数进行更新,变点出现后对第2阶段进行更新;最后,利用多阶段模型进行剩余寿命预测。数值仿真和实例研究结果表明:基于贝叶斯变点检测的滚动轴承寿命预测方法可以提高85%的变点检测精度,进而实现高精度的多阶段剩余寿命预测。 展开更多
关键词 寿命预测 滚动轴承 贝叶斯变点检测 随机退化设备
在线阅读 下载PDF
卷积自编码器和残差循环神经网络在刀具剩余寿命预测中的应用
20
作者 周学良 潘晓明 吴瑶 《机械科学与技术》 北大核心 2025年第5期806-813,共8页
针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化... 针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化和反卷积上采样方法获取工况信号的深层特征,并将其与分段后的原始信号融合后作为刀具剩余寿命的表征;同时结合残差网络的思想对双向门控循环单元(Bidirectional gated recurrent unit,BiGRU)的结构进行改进以增强对时序特征的捕获能力。实验结果表明,该方法比其他算法具有更高的预测精度。 展开更多
关键词 刀具 剩余寿命预测 卷积自编码器 残差门控循环单元 特征融合
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部