期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning 被引量:1
1
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chunsheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期512-521,共10页
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi... The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method. 展开更多
关键词 Lithium-ion batteries remaining useful life Physics-informed machine learning
在线阅读 下载PDF
End-cloud collaboration method enables accurate state of health and remaining useful life online estimation in lithium-ion batteries 被引量:4
2
作者 Bin Ma Lisheng Zhang +5 位作者 Hanqing Yu Bosong Zou Wentao Wang Cheng Zhang Shichun Yang Xinhua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期1-17,I0001,共18页
Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accur... Though the lithium-ion battery is universally applied,the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions,electrode material degradation,and even thermal runaway.Accurate estimation and prediction of battery health conditions are crucial for battery safety management.In this paper,an end-cloud collaboration method is proposed to approach the track of battery degradation process,integrating end-side empirical model with cloud-side data-driven model.Based on ensemble learning methods,the data-driven model is constructed by three base models to obtain cloud-side highly accurate results.The double exponential decay model is utilized as an empirical model to output highly real-time prediction results.With Kalman filter,the prediction results of end-side empirical model can be periodically updated by highly accurate results of cloud-side data-driven model to obtain highly accurate and real-time results.Subsequently,the whole framework can give an accurate prediction and tracking of battery degradation,with the mean absolute error maintained below 2%.And the execution time on the end side can reach 261μs.The proposed end-cloud collaboration method has the potential to approach highly accurate and highly real-time estimation for battery health conditions during battery full life cycle in architecture of cyber hierarchy and interactional network. 展开更多
关键词 State of health remaining useful life End-cloud collaboration Ensemble learningDifferential thermal voltammetry
在线阅读 下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
3
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
在线阅读 下载PDF
Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review 被引量:1
4
作者 Vaishali Sawant Rashmi Deshmukh Chetan Awati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期438-451,I0011,共15页
Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power... Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented. 展开更多
关键词 SUPERCAPACITORS Energy storage materials Artificial neural network Machine learning Capacitance prediction remaining useful life
在线阅读 下载PDF
Remaining Useful Life Estimation of Lithium-Ion Battery Based on Gaussian Mixture Ensemble Kalman Filter
5
作者 Ruoxia Li Siyuan Zhang Peijun Yang 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期340-349,共10页
The remaining useful life(RUL)prediction is a crucial indicator for the lithium-ion battery health prognostic.The particle filter(PF),used together with an empirical model,has become one of the most well-accepted tech... The remaining useful life(RUL)prediction is a crucial indicator for the lithium-ion battery health prognostic.The particle filter(PF),used together with an empirical model,has become one of the most well-accepted techniques for RUL prediction.In this work,a novel filtering algorithm,named the Gaussian mixture model(GMM)-ensemble Kalman filter(EnKF)is proposed.It embeds the Gaussian mixture model in the EnKF framework to cope with the non-Gaussian feature of the system state space,and meanwhile address some of the major shortcomings of the PF.The GMM-EnKF and the PF are both applied on public data sets for RUL prediction and the simulation results show superiority of our proposed approach to the PF. 展开更多
关键词 lithium-ion battery Gaussian mixture model ensemble Kalman filter(EnKF) remaining useful life(RUL)
在线阅读 下载PDF
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning
6
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chi Yung Chung 《Journal of Energy Chemistry》 2025年第2期524-534,I0011,共12页
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo... Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices. 展开更多
关键词 Lithium-ion batteries Battery degradation remaining useful life Semi-supervised learning
在线阅读 下载PDF
A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries 被引量:8
7
作者 Kai Luo Xiang Chen +1 位作者 Huiru Zheng Zhicong Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期159-173,I0006,共16页
In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemica... In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemical models for battery state predictions.The review demonstrates that machine learning and deep learning approaches can be used to construct fast and accurate data-driven models for the prediction of battery performance.The details,advantages,and limitations of these approaches are presented,compared,and summarized.Finally,future key challenges and opportunities are discussed. 展开更多
关键词 Lithium-ion battery State of health State of charge remaining useful life DATA-DRIVEN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部