As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenanc...As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.展开更多
This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand...This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.展开更多
With the support of the Fundamental Reliability Theoretical Research (FRTR) Foundation of the Quality Control Bureau of Ministry of Astronautics (MOA), PRC, 9 Chinese institutes and universities have worked for years ...With the support of the Fundamental Reliability Theoretical Research (FRTR) Foundation of the Quality Control Bureau of Ministry of Astronautics (MOA), PRC, 9 Chinese institutes and universities have worked for years on reliability statistics problems pending to be solved in space research and development. This paper gives a brief review of our main research results, including (1) Results on Normal Distributions; (2) Results on Weibull Distributions; (3) Results on the Synthesisof System Reliability-Theoretical Method; (4) Results on the Synthesis of System Reliability-Approximation Method: Binomial Distribution, Exponential Distribution, Weibull Distribution, Parallel System, General Cases; (5) Structual Reliability; (6) Zero-Failure Reliability Estimation; (7) Storage Life and Others. All these results can be acquired from the Quality Control Bureau of the Ministry of Aero-Space Industry (MAS).展开更多
A general version of the inverted exponential distribution is introduced, studied and analyzed. This generalization depends on the method of Marshall-Olkin to extend a family of distributions. Some statistical and rel...A general version of the inverted exponential distribution is introduced, studied and analyzed. This generalization depends on the method of Marshall-Olkin to extend a family of distributions. Some statistical and reliability properties of this family are studied. In addition, numerical estimation of the maximum likelihood estimate(MLE) parameters are discussed in details. As an application, some real data sets are analyzed and it is observed that the presented family provides a better fit than some other known distributions.展开更多
基金Project(61174115)supported by the National Natural Science Foundation of ChinaProject(L2013001)supported by Scientific Research Program of Liaoning Provincial Education Department,China
文摘As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.
基金supported by the National Natural Science Foundation of China(Grant No.12002246 and No.52178301)Knowledge Innovation Program of Wuhan(Grant No.2022010801020357)+2 种基金the Science Research Foundation of Wuhan Institute of Technology(Grant No.K2021030)2020 annual Open Fund of Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022)Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Grant No.2019KA03)。
文摘This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.
文摘With the support of the Fundamental Reliability Theoretical Research (FRTR) Foundation of the Quality Control Bureau of Ministry of Astronautics (MOA), PRC, 9 Chinese institutes and universities have worked for years on reliability statistics problems pending to be solved in space research and development. This paper gives a brief review of our main research results, including (1) Results on Normal Distributions; (2) Results on Weibull Distributions; (3) Results on the Synthesisof System Reliability-Theoretical Method; (4) Results on the Synthesis of System Reliability-Approximation Method: Binomial Distribution, Exponential Distribution, Weibull Distribution, Parallel System, General Cases; (5) Structual Reliability; (6) Zero-Failure Reliability Estimation; (7) Storage Life and Others. All these results can be acquired from the Quality Control Bureau of the Ministry of Aero-Space Industry (MAS).
基金supported by the Research Center of the Female Scientific and Medical Colleges,Deanship of Scientific Research,King Saud University
文摘A general version of the inverted exponential distribution is introduced, studied and analyzed. This generalization depends on the method of Marshall-Olkin to extend a family of distributions. Some statistical and reliability properties of this family are studied. In addition, numerical estimation of the maximum likelihood estimate(MLE) parameters are discussed in details. As an application, some real data sets are analyzed and it is observed that the presented family provides a better fit than some other known distributions.