期刊文献+
共找到38,314篇文章
< 1 2 250 >
每页显示 20 50 100
Smart Cellulose‑Based Janus Fabrics with Switchable Liquid Transportation for Personal Moisture and Thermal Management
1
作者 Jianfeng Xi Yanling Lou +5 位作者 Liucheng Meng Chao Deng Youlu Chu Zhaoyang Xu Huining Xiao Weibing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期333-347,共15页
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana... The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations. 展开更多
关键词 Directional water transport Cotton fabric Anti-gravity directional liquid transportation Janus wettability
在线阅读 下载PDF
Nanoparticle-Assisted Phonon Transport Modulation in Si/Ge Heterostructures Using Neuroevolution Potential Machine Learning Models
2
作者 Jincheng Yue Rongkun Chen +1 位作者 Dengke Ma Shiqian Hu 《Chinese Physics Letters》 2025年第3期93-117,共25页
Reducing the thermal boundary resistance(TBR)is critical to enhance the thermal management efficiency and optimize the performance of electronic and thermoelectric devices.In this study,we employed non-equilibrium mol... Reducing the thermal boundary resistance(TBR)is critical to enhance the thermal management efficiency and optimize the performance of electronic and thermoelectric devices.In this study,we employed non-equilibrium molecular dynamics(NEMD)simulations using neuroevolution potential(NEP)machine learning models to investigate the impact of embedding nanoparticles in Si/Ge heterostructures on the TBR.Our results showed a significant reduction in the TBR.This was attributed to the enhanced phonon density of states matching via resonance,which promoted more efficient elastic phonon transport across the interface.However,this approach also led to a substantial increase in the bulk thermal resistance,highlighting a trade-off in which the overall heat dissipation is compromised.To address this,we investigated an alternative strategy in which a nanoparticle was positioned directly at the interface to modulate the interfacial modes,thereby improving the phonon transport efficiency without adversely affecting the bulk thermal properties.NEMD simulations validated this approach,showing a comparable TBR reduction,while mitigating the bulk thermal resistance increase observed with the resonance-based embedding method.This study offers valuable insights into resolving interfacial heat dissipation challenges and provides a balanced strategy for optimizing the thermal transport efficiency of nanoscale material systems. 展开更多
关键词 evolution INTERFACIAL transport
在线阅读 下载PDF
Transport analysis of the EHL-2 spherical torus in a high-ion-temperature scenario
3
作者 Xueyun WANG Wenjun LIU +12 位作者 Danke YANG Guang YANG Muzhi TAN Xinchen JIANG Huasheng XIE Yuejiang SHI Hanyue ZHAO Yumin WANG Yunfeng LIANG Jiaqi DONG Bin WU Chengyue LIU the EHL-2 Team 《Plasma Science and Technology》 2025年第2期75-86,共12页
EHL-2 is an ENN second-generation device aimed at studying proton-boron(p-11B)fusion reactions in a spherical torus.The design parameters are Ti0~30 keV,Ti/Te>2,n_(e0)~1×10^(20)m^(-3),I_(p)~3 MA,B_(t)~3 T,and... EHL-2 is an ENN second-generation device aimed at studying proton-boron(p-11B)fusion reactions in a spherical torus.The design parameters are Ti0~30 keV,Ti/Te>2,n_(e0)~1×10^(20)m^(-3),I_(p)~3 MA,B_(t)~3 T,andτ_(E)~0.5 s.High ion temperature is one of the standard operation scenarios of EHL-2,aiming to reduce bremsstrahlung radiation while enhancing plasma parameters by elevating the ion to electron temperature ratio.In order to achieve high ion temperature,neutral beam injection is considered the primary heating method during the flat-top phase.The neutral beam system for EHL-2 comprises 3-5 beams with energy/power ranging from 60 keV/4 MW,80-100 keV/10 MW,to 200 keV/3 MW.This work conducts predictive analysis on core transport during the flat-top phase of EHL-2’s high-ion-temperature scenario utilizing ASTRA.The study delineates the potential operating range of core temperature and other parameters given the designed heating capacity.Specifically,the study presents predictive simulations based on CDBM,GLF23,Bohm-gyro-Bohm,and IFSPPPL transport models,evaluating the steady-state power balance,energy confinement time,and impact of various parameters such as plasma density and NBI power on core ion temperature.The simulations demonstrate that the design parameters of the EHL-2 high-Ti scenario,although sensitive to varying transport models,are hopefully attainable as long as adequate ion heating and controlled ion transport levels are ensured. 展开更多
关键词 transport ASTRA hot-ion mode spherical torus
在线阅读 下载PDF
Entanglement and energy transportation in central-spin quantum battery
4
作者 Fan Liu Hui-Yu Yang +3 位作者 Shuai-Li Wang Jun-Zhong Wang Kun Zhang Xiao-Hui Wang 《Chinese Physics B》 2025年第2期141-147,共7页
Quantum battery exploits the principle of quantum mechanics to transport and store energy. We study the energy transportation of the central-spin quantum battery, which is composed of N_b spins serving as the battery ... Quantum battery exploits the principle of quantum mechanics to transport and store energy. We study the energy transportation of the central-spin quantum battery, which is composed of N_b spins serving as the battery cells, and surrounded by N_c spins serving as the charger cells. We apply the invariant subspace method to solve the dynamics of the central-spin battery with a large number of spins. We establish a universal inverse relationship between the battery capacity and the battery–charger entanglement, which persists in any size of the battery and charger cells. Moreover, we find that when N_b= N_c, the central-spin battery has the optimal energy transportation, corresponding to the minimal battery–charger entanglement. Surprisingly, the central-spin battery has a uniform energy transportation behaviors in certain battery–charger scales. Our results reveal a nonmonotonic relationship between the battery–charger size and the energy transportation efficiency, which may provide more insights on designing other types of quantum batteries. 展开更多
关键词 central-spin quantum battery energy transportation ENTANGLEMENT
在线阅读 下载PDF
Composition design of fullerene-based hybrid electron transport layer for efficient and stable wide-bandgap perovskite solar cells
5
作者 Shuai Zeng Hui Wang +11 位作者 Xiangyang Li Hailin Guo Linfeng Dong Chuanhang Guo Zhenghong Chen Jinpeng Zhou Yuandong Sun Wei Sun Liyan Yang Wei Li Dan Liu Tao Wang 《Journal of Energy Chemistry》 2025年第3期172-178,共7页
Fullerene derivatives[6,6]-phenyl-C61-butyric acid methyl ester(PC_(61)BM)has been routinely used as the electron transport layer(ETL)in perovskite solar cells due to its suitable energy levels and good solution proce... Fullerene derivatives[6,6]-phenyl-C61-butyric acid methyl ester(PC_(61)BM)has been routinely used as the electron transport layer(ETL)in perovskite solar cells due to its suitable energy levels and good solution processability.However,its electron mobility and conductivity still need to be further enhanced for constructing high performance perovskite solar cells(PSCs).Herein,by doping the PC_(61)BM with a p-type polymer PM6 and n-type molecule ITIC,efficient wide-bandgap perovskite solar cells with improved efficiency and operational/storage stability are obtained.Further spectroscopy and electric measurements indicate PM6 and ITIC can both passivate defects at the perovskite/ETL interface,meanwhile ITIC can elevate the Fermi level of PC_(61)BM to enhance conductivity and PM6 can improve the photo-induced electron mobility of the ETL,facilitating charge extraction and reducing charge recombination.As the results,Cs_(0.17)FA_(0.83)Pb(I_(0.83)Br_(0.17))_(3)wide-bandgap PSCs with PM6:PC_(61)BM:ITIC as the ETL demonstrates a superior efficiency of 22.95%,compared to 20.89%of the PC_(61)BM assisted device. 展开更多
关键词 Perovskite solar cells FULLERENE Electron transport layer Composition
在线阅读 下载PDF
Atomically Dispersed Metal Atoms:Minimizing Interfacial Charge Transport Barrier for Efficient Carbon-Based Perovskite Solar Cells
6
作者 Yanying Shi Xusheng Cheng +7 位作者 Yudi Wang Wenrui Li Wenzhe Shang Wei Liu Wei Lu Jiashuo Cheng Lida Liu Yantao Shi 《Nano-Micro Letters》 2025年第5期604-616,共13页
Carbon-based perovskite solar cells(C-PSCs)exhibit notable stability and durability.However,the power conversion efficiency(PCE)is significantly hindered by energy level mismatches,which result in interfacial charge t... Carbon-based perovskite solar cells(C-PSCs)exhibit notable stability and durability.However,the power conversion efficiency(PCE)is significantly hindered by energy level mismatches,which result in interfacial charge transport barriers at the electrode-related interfaces.Herein,we report a back electrode that utilizes atomically dispersed metallic cobalt(Co)in carbon nanosheets(Co_1/CN)to adjust the interfacial energy levels.The electrons in the d-orbitals of Co atoms disrupt the electronic symmetry of the carbon nanosheets(CN),inducing a redistribution of the electronic density of states that leads to a downward shift in the Fermi level and a significantly reduced interfacial energy barrier.As a result,the C-PSCs using Co1/CN as back electrodes achieve a notable PCE of 22.61%with exceptional long-term stability,maintaining 94.4%of their initial efficiency after 1000 h of continuous illumination without encapsulation.This work provides a promising universal method to regulate the energy level of carbon electrodes for C-PSCs and paves the way for more efficient,stable,and scalable solar technologies toward commercialization. 展开更多
关键词 Perovskite solar cells Carbon electrode Charge transport Energy level alignment
在线阅读 下载PDF
Disentangling electronic and phononic thermal transport across two-dimensional interfaces
7
作者 Linxin Zhai Zhiping Xu 《Chinese Physics B》 2025年第2期401-406,共6页
Electrical and thermal transport at two-dimensional(2D) interfaces is critical for semiconductor technology, yet their interplay remains unclear. We report a theoretical proposal to separate electronic and phononic co... Electrical and thermal transport at two-dimensional(2D) interfaces is critical for semiconductor technology, yet their interplay remains unclear. We report a theoretical proposal to separate electronic and phononic contributions to thermal conductance at 2D interfaces with graphene, which is validated by non-equilibrium Green's function calculations and molecular dynamics simulations for graphene–gold contacts. Our results reveal that while metal–graphene interfaces are transparent for both electrons and phonons, non-covalent graphene interfaces block electronic tunneling beyond two layers but not phonon transport. This suggests that the Wiedemann–Franz law can be experimentally tested by measuring transport across interfaces with varying graphene layers. 展开更多
关键词 electrical and thermal transport 2D interfaces Wiedemann–Franz law theoretical proposal
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape
8
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Facilitated transport membranes in post-combustion carbon capture:Recent advancements in polymer materials and challenges towards practical application
9
作者 Zihan Wang Zhien Zhang +1 位作者 Mohamad Reza Soltanian Ruizhi Pang 《Green Energy & Environment》 2025年第3期500-517,共18页
Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to... Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to achieve efficient separation and to break the Robson upper bound.This paper reviews the progress of facilitated transport membranes research regarding polymer materials,principles,and problems faced at this stage.Firstly,we briefly introduce the transport mechanism of the facilitated transport membranes.Then the research progress of several major polymers used for facilitated transport membranes for CO_(2)/N_(2) separation was presented in the past five years.Additionally,we analyze the primary challenges of facilitated transport membranes,including the influence of water,the effect of temperature,the saturation effect of the carrier,and the process configuration.Finally,we also delve into the challenges and competitiveness of facilitated transport membranes. 展开更多
关键词 Facilitated transport CO_(2)/N_(2)separation Polymer materials Membrane stability
在线阅读 下载PDF
Multi-Objective optimization for stable and efficient cargo transportation of partial space elevator
10
作者 Gefei Shi Zheng H.Zhu 《Defence Technology(防务技术)》 2025年第2期17-29,共13页
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s... This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function. 展开更多
关键词 Partial space elevator Stable transportation Libration decoupling analytical speed function Coordinate game Model predictive control Pareto optimization
在线阅读 下载PDF
Structural and transport properties of(Mg,Fe)SiO_(3) at high temperature and high pressure
11
作者 Shu Huang Zhiyang Xiang +5 位作者 Shi He Luhan Yin Shihe Zhang Chen Chen Kaihua He Cheng Lu 《Chinese Physics B》 2025年第3期123-129,共7页
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert... (Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle. 展开更多
关键词 (Mg Fe)SiO_(3) structural and transport properties molecular dynamics simulations high temperature and high pressure
在线阅读 下载PDF
Synergistic enhancement of ion/electron transport by ultrafine nanoparticles and graphene in Li_(2)FeTiO_(4)/C/G nanofibers for symmetric Li-ion batteries
12
作者 Wenjie Ma Yakun Tang +4 位作者 Yue Zhang Xiaohui Li Lang Liu Xueting Wang Yuliang Cao 《Journal of Energy Chemistry》 2025年第2期42-51,I0002,共11页
Low-cost Fe-based disordered rock salt(DRX)Li_(2)FeTiO_(4)is capable of providing high capacity(295 mA h g^(-1))by redox activity of cations(Fe^(2+)/Fe^(4+)and Ti^(3+)/Ti^(4+))and anionic oxygen.However,DRX structures... Low-cost Fe-based disordered rock salt(DRX)Li_(2)FeTiO_(4)is capable of providing high capacity(295 mA h g^(-1))by redox activity of cations(Fe^(2+)/Fe^(4+)and Ti^(3+)/Ti^(4+))and anionic oxygen.However,DRX structures lack transport channels for ions and electrons,resulting in sluggish kinetics,poor electrochemical activity,and cyclability.Herein,graphene conductive carbon network permeated Li_(2)FeTiO_(4)(LFT/C/G)nanofibers are successfully prepared by a facile sol-gel assisted electrospinning method.Ultrafine Li_(2)FeTiO_(4)nanoparticles(2 nm)and one-dimensional(1D)structure provide abu ndant active sites and unobstructed diffu sion channels,accelerating ion diffusion.In addition,introducing graphene reduces the band gap and Li^(+)diffusion barrier and improves the dynamic properties of Li_(2)FeTiO_(4),thus achieving a relatively mild interfacial reaction and reversible redox reaction.As expected,the LFT/C/1.0G cathode delivers a remarkable discharge capacity(238.5 mA h g^(-1)),high energy density(508.8 Wh kg^(-1)),and excellent rate capability(51.2 mA hg^(-1)at 1.0 A g^(-1)).Besides,the LFT/C/1.0G anode also displays a high capacity(514.5 mA h g^(-1)at 500 mA g^(-1))and a remarkable rate capability(243.9 mA h g^(-1)at 8 A g^(-1)).Moreover,the full batteries based on the LFT/C/1.0G symmetric electrode demonstrate a reversible capacity of 117.0 mA h g^(-1)after 100 cycles at 50 mA g^(-1).This study presents useful insights into developing cost-effective DRX cathodes with durable and fast lithium storage. 展开更多
关键词 Disordered rock salt Li_(2)FeTiO_(4) GRAPHENE 1D structure Rapid ion/electron transport Lithium-ion battery electrode
在线阅读 下载PDF
Apple polyphenol phloretin inhibits typeⅡglucose transporter and enhances anti-HER2 antibody drug binding as an adjuvant treatment for HER2-positive breast cancer
13
作者 Han-Sheng Chang Tzu-Chun Cheng +6 位作者 Shih-Hsin Tu Pei-Han Liao Yu-Ching Lee Chi-Tang Ho Min-Hsiung Pan Li-Ching Chen Yuan-Soon Ho 《Food Science and Human Wellness》 2025年第4期1264-1280,共17页
This study presents novel findings on the potential of phloretin,an apple polyphenol,to enhance the effectiveness of anti-human epidermal growth factor receptor-2(HER2)antibody therapy in HER2-positive breast cancer p... This study presents novel findings on the potential of phloretin,an apple polyphenol,to enhance the effectiveness of anti-human epidermal growth factor receptor-2(HER2)antibody therapy in HER2-positive breast cancer patients.Our research reveals that phloretin inhibits typeⅡglucose transporter(GLUT2)activity,significantly reducing cancer cell glucose uptake.We confirmed the overexpression of GLUT1 and GLUT2 mRNA in paired human breast tumor tissues,with GLUT2 overexpression associated explicitly with poorer survival rates in breast cancer patients.Treatment with phloretin was observed to increase the interaction between GLUT2 and HER2 proteins,attenuate glycolysis,and enhance the binding affinity of anti-HER2 antibody drugs to target human breast cancer cells.Furthermore,the efficacy of the combination therapy involving phloretin and antibody drugs was reaffirmed in a cell-derived xenograft tumor animal model,particularly in suppressing the growth of trastuzumab-resistant HER2-positive(HER2+)breast cancer.These significant findings suggest that targeting GLUT2 activity with phloretin in combination with anti-HER2 antibody drugs may help mitigate the development of drug-resistant breast cancer,offering valuable insights for enhancing tumor treatment strategies and contributing to developing more effective therapies. 展开更多
关键词 TypeⅡglucose transporter(GLUT2) PHLORETIN Human epidermal growth factor receptor 2-intracellular domain(HER2-ICD) TRASTUZUMAB Trastuzumab-resistance
在线阅读 下载PDF
A 3D Geometry-Based Scattering Model for Vehicleto-Vehicle Wideband MIMO Relay-Based Cooperative Channels 被引量:1
14
作者 Xiaolin Liang Xiongwen Zhao +2 位作者 Shu Li Qi Wang Wenbing Lu 《China Communications》 SCIE CSCD 2016年第10期1-10,共10页
In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical... In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical three-cylinder is proposed. Non-line-of-sight(NLOS) propagation condition is assumed in amplify-and-forward(AF) cooperative networks from the source mobile station(S) to the destination mobile station(D) via the mobile relay station(R). We extend the proposed narrowband model to wideband and also introduce the carrier frequency and bandwidth into the model. To avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions, the channel is realized first. By using the realized channel matrix, the channel properties are further investigated. 展开更多
关键词 geometry-based scattering model MIMO relay-based cooperative communication vehicle-to-vehicle(V2V) WIDEBAND
在线阅读 下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms 被引量:1
15
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 Lithium metal batteries Single-ion conductor Polymer electrolytes Ion transport mechanism Li-ion transport number
在线阅读 下载PDF
Investigating the elliptic anisotropy of identified particles in p-Pb collisions with a multi-phase transport model 被引量:1
16
作者 Si-Yu Tang Liang Zheng +1 位作者 Xiao-Ming Zhang Ren-Zhuo Wan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期160-169,共10页
The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculat... The elliptic azimuthal anisotropy coefficient(v_(2))of the identified particles at midrapidity(|η|<0.8)was investigated in p-Pb collisions at√s_(NN)=5.02 TeV using a multi-phase transport model(AMPT).The calculations of differential v_(2)based on the advanced flow extraction method of light flavor hadrons(pions,kaons,protons,andΛ)in small collision systems were extended to a wider transverse momentum(p_(T))range of up to 8 GeV/c for the first time.The string-melting version of the AMPT model provides a good description of the measured p_(T)-differential v_(2)of the mesons but exhibits a slight deviation from the baryon v_(2).In addition,we observed the features of mass ordering at low p_(T)and the approximate number-of-constituentquark(NCQ)scaling at intermediate p_(T).Moreover,we demonstrate that hadronic rescattering does not have a significant impact on v_(2)in p-Pb collisions for different centrality selections,whereas partonic scattering dominates in generating the elliptic anisotropy of the final particles.This study provides further insight into the origin of collective-like behavior in small collision systems and has referential value for future measurements of azimuthal anisotropy. 展开更多
关键词 Azimuthal anisotropy Small collision systems transport model
在线阅读 下载PDF
Navigating the hydrogen prospect:A comprehensive review of sustainable source-based production technologies,transport solutions,advanced storage mechanisms,and CCUS integration 被引量:1
17
作者 Sehar Tasleem Chandra Sekhar Bongu +1 位作者 Mohan Raj Krishnan Edreese Housni Alsharaeh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期166-215,I0005,共51页
The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable... The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale. 展开更多
关键词 Source-based hydrogen Hydrogen utilization Carbon capture E-fuels Hydrogen storage transport infrastructure
在线阅读 下载PDF
Reactive transport modeling constraints on the complex genesis of a lacustrine dolomite reservoir:A case from the Eocene Qaidam Basin,China 被引量:1
18
作者 Ying Xiong Bo Liu +5 位作者 Xiu-Cheng Tan Zheng-Meng Hou Jia-Shun Luo Ya-Chen Xie Kai-Bo Shi Kun-Yu Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2240-2256,共17页
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.... Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs. 展开更多
关键词 Reactive transport modeling Lacustrine dolomite Mineralogy and porosity evolution Reservoir genesis
在线阅读 下载PDF
Characteristics of proppant transport and placement within rough hydraulic fractures 被引量:1
19
作者 HUANG Hai ZHENG Yong +5 位作者 WANG Yi WANG Haizhu NI Jun WANG Bin YANG Bing ZHANG Wentong 《Petroleum Exploration and Development》 SCIE 2024年第2期453-463,共11页
A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to per... A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to perform proppant transport experiments.The typical characteristics of proppant transport and placement in rough fractures and its intrinsic mechanisms are investigated,and the influences of fracture inclination,fracture width and fracturing fluid viscosity on proppant transport and placement in rough fractures are analyzed.The results show that the rough fractures cause variations in the shape of the flow channel and the fluid flow pattern,resulting in the bridging buildup during proppant transport to form unfilled zone,the emergence of multiple complex flow patterns such as channeling,reverse flow and bypassing of sand-carrying fluid,and the influence on the stability of the sand dune.The proppant has a higher placement rate in inclined rough fractures,with a maximum increase of 22.16 percentage points in the experiments compared to vertical fractures,but exhibits poor stability of the sand dune.Reduced fracture width aggravates the bridging of proppant and induces higher pumping pressure.Increasing the viscosity of the fracturing fluid can weaken the proppant bridging phenomenon caused by the rough fractures. 展开更多
关键词 reservoir fracturing rough fracture PROPPANT transport and placement characteristics bridging buildup
在线阅读 下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network 被引量:1
20
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部