To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth...To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth(EFG) technique was investigated. For comparison, the crucible was located at the top(case A) and the middle(case B) of the RF coil, respectively. Furthermore, the lattice integrities were studied by the double-crystal X-ray diffraction, and the dislocations were observed under the optical microscope and atomic force microscope after corroding in molten KOH at 390 ℃. The crystals in case B exhibit better lattice integrity with smaller full width at half maximum of 29.13 rad·s, while the value in case A is 45.17 rad·s. The morphologies of dislocation etch pits in both cases show typical triangular symmetry with smooth surfaces. However, the dislocation density of 2.8×104 cm-2 in case B is only half of that in case A, and the distribution is more uniform, compared to the U-shaper in case A.展开更多
For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
To realize high accurate control of relative position and attitude between two spacecrafts, the coupling between position and attitude must be fully considered and a more precise model should be established. This pape...To realize high accurate control of relative position and attitude between two spacecrafts, the coupling between position and attitude must be fully considered and a more precise model should be established. This paper breaks the traditional divide and conquer idea, and uses a mathematical tool, namely dual quaternion to establish the integrated 6 degree-of-freedom(6-DOF) model of relative position and attitude, which describes the coupled relative motion in a compact and efficient form and needs less information of the target. Considering the complex operation rules and the unclarity of the current relative motion model in dual quaternion, necessary mathematical foundations are given at first, followed by clear and detailed modeling process and analysis. Finally a generalized proportion-derivative(PD) controller law is designed. The simulation results show that based on the integrated model established by dual quaternion, this control law can achieve a high control accuracy of relative motion.展开更多
基金Project(BA2012049)supported by the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements,China
文摘To obtain the stable temperature field required for growing sapphire crystals, the influence of relative positions between RF coil and crucible on the performances of sapphires produced by edge-defined film-fed growth(EFG) technique was investigated. For comparison, the crucible was located at the top(case A) and the middle(case B) of the RF coil, respectively. Furthermore, the lattice integrities were studied by the double-crystal X-ray diffraction, and the dislocations were observed under the optical microscope and atomic force microscope after corroding in molten KOH at 390 ℃. The crystals in case B exhibit better lattice integrity with smaller full width at half maximum of 29.13 rad·s, while the value in case A is 45.17 rad·s. The morphologies of dislocation etch pits in both cases show typical triangular symmetry with smooth surfaces. However, the dislocation density of 2.8×104 cm-2 in case B is only half of that in case A, and the distribution is more uniform, compared to the U-shaper in case A.
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
基金supported by the National Natural Science Foundation of China(6107412761427809)
文摘To realize high accurate control of relative position and attitude between two spacecrafts, the coupling between position and attitude must be fully considered and a more precise model should be established. This paper breaks the traditional divide and conquer idea, and uses a mathematical tool, namely dual quaternion to establish the integrated 6 degree-of-freedom(6-DOF) model of relative position and attitude, which describes the coupled relative motion in a compact and efficient form and needs less information of the target. Considering the complex operation rules and the unclarity of the current relative motion model in dual quaternion, necessary mathematical foundations are given at first, followed by clear and detailed modeling process and analysis. Finally a generalized proportion-derivative(PD) controller law is designed. The simulation results show that based on the integrated model established by dual quaternion, this control law can achieve a high control accuracy of relative motion.