期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Subspace Semi-supervised Fisher Discriminant Analysis 被引量:5
1
作者 YANG Wu-Yi LIANG Wei +1 位作者 XIN Le ZHANG Shu-Wu 《自动化学报》 EI CSCD 北大核心 2009年第12期1513-1519,共7页
关键词 费希尔判别分析法 鉴别分析 离散度 降维方法
在线阅读 下载PDF
基于改进3E-LDA的织物图像分类算法 被引量:4
2
作者 靳文哲 吕文涛 +2 位作者 郭庆 徐羽贞 余润泽 《现代纺织技术》 北大核心 2024年第6期89-96,共8页
针对训练样本数太少(训练样本数量小于数据维数)导致的模型分辨能力下降问题,提出了一种基于正则化改进3E-LDA的织物图像分类算法(I3E-LDA算法)。首先利用类加权中值代替样本均值计算类内散点矩阵,削弱离群值和噪声的影响,以此作为非参... 针对训练样本数太少(训练样本数量小于数据维数)导致的模型分辨能力下降问题,提出了一种基于正则化改进3E-LDA的织物图像分类算法(I3E-LDA算法)。首先利用类加权中值代替样本均值计算类内散点矩阵,削弱离群值和噪声的影响,以此作为非参数加权特征提取法对类内散点矩阵进行正则化。然后利用目标组合的方法,通过引入平衡参数对目标函数进行正则化,来保留更具判别性的特征数据。通过不同织物图像间更具判别性的特征数据可以更好地对其区分。结合改进的零空间法解决类内散点矩阵奇异性和小样本问题,从而提高分类准确率。在阿里天池织物数据集和花色织物图像上进行训练和测试,将图像按照正常图像和非正常图形(瑕疵图像)进行区分。实验结果表明,I3E-LDA算法有效实现了织物图像分类,且对于较少的训练样本(20%~40%的样本用于训练)提升了分类精度。 展开更多
关键词 线性判别分析 织物 图像分类 正则化 小样本
在线阅读 下载PDF
采用虚拟训练样本优化正则化判别分析 被引量:17
3
作者 王卫东 郑宇杰 杨静宇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第9期1327-1331,共5页
在模式特征子空间中选取一组标准正交向量,使用这组向量可以生成大量的虚拟训练样本,从而实现对协方差矩阵的优化.在ORL人脸库上的实验表明,优化后协方差矩阵的特征值均显著变大,使该矩阵的逆阵稳定性得到了提高.利用优化的协方差矩阵... 在模式特征子空间中选取一组标准正交向量,使用这组向量可以生成大量的虚拟训练样本,从而实现对协方差矩阵的优化.在ORL人脸库上的实验表明,优化后协方差矩阵的特征值均显著变大,使该矩阵的逆阵稳定性得到了提高.利用优化的协方差矩阵对正则化判别分析方法进行优化,其模式分类正确率有显著提高. 展开更多
关键词 小样本问题 正则化判别分析 虚拟样本 优化方法 特征提取 人脸识别
在线阅读 下载PDF
基于集成学习的规范化LDA人脸识别 被引量:6
4
作者 张燕平 窦蓉蓉 +1 位作者 赵姝 曹振田 《计算机工程》 CAS CSCD 北大核心 2010年第14期144-146,共3页
针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高... 针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高样本在新的特征空间中的可分离性,将识别率提高至98.5%。通过ORL数据库的大量实验表明,该算法比传统算法有更好的性能。 展开更多
关键词 人脸识别 规范化线性鉴别分析 集成学习
在线阅读 下载PDF
面向Kullback-Leibler散度不确定集的正则化线性判别分析 被引量:4
5
作者 梁志贞 张磊 《自动化学报》 EI CAS CSCD 北大核心 2022年第4期1033-1047,共15页
线性判别分析是一种统计学习方法.针对线性判别分析的小样本奇异性问题和对污染样本敏感性问题,目前许多线性判别分析的改进算法已被提出.本文提出了基于Kullback-Leibler(KL)散度不确定集的判别分析方法.提出的方法不仅利用了Ls范数定... 线性判别分析是一种统计学习方法.针对线性判别分析的小样本奇异性问题和对污染样本敏感性问题,目前许多线性判别分析的改进算法已被提出.本文提出了基于Kullback-Leibler(KL)散度不确定集的判别分析方法.提出的方法不仅利用了Ls范数定义类间距离和Lr范数定义类内距离,而且对类内样本和各类中心的信息进行基于KL散度不确定集的概率建模.首先通过优先考虑不利区分的样本提出了一种正则化对抗判别分析模型并利用广义Dinkelbach算法求解此模型.这种算法的一个优点是在适当的条件下优化子问题不需要取得精确解.投影(次)梯度法被用来求解优化子问题.此外,也提出了正则化乐观判别分析并采用交替优化技术求解广义Dinkelbach算法的优化子问题.许多数据集上的实验表明了本文的模型优于现有的一些模型,特别是在污染的数据集上,正则化乐观判别分析由于优先考虑了类中心附近的样本点,从而表现出良好的性能. 展开更多
关键词 判别分析 KL散度 不确定集 正则化 数据分类
在线阅读 下载PDF
基于子空间类标传播和正则判别分析的单标记图像人脸识别 被引量:6
6
作者 殷飞 焦李成 杨淑媛 《电子与信息学报》 EI CSCD 北大核心 2014年第3期610-616,共7页
针对单标记图像人脸识别问题,该文提出一种基于子空间类标传播和正则判别分析的半监督维数约简方法。首先,基于子空间假设设计了一种类标传播方法,将类标信息传播到无类标样本上。然后,在传播得到的带类标数据集上使用正则判别分析对数... 针对单标记图像人脸识别问题,该文提出一种基于子空间类标传播和正则判别分析的半监督维数约简方法。首先,基于子空间假设设计了一种类标传播方法,将类标信息传播到无类标样本上。然后,在传播得到的带类标数据集上使用正则判别分析对数据进行维数约简。最后,在低维空间使用最近邻方法对测试人脸完成识别。在3个公共人脸数据库CMU PIE,Extended Yale B和AR上的实验,验证了该方法的可行性和有效性。 展开更多
关键词 人脸识别 子空间假设 类标传播 正则判别分析 半监督维数约简
在线阅读 下载PDF
基于图嵌入正则化的人脸线性判别分析 被引量:2
7
作者 杨安平 陈松乔 胡鹏 《计算机工程》 CAS CSCD 北大核心 2011年第12期164-165,169,共3页
提出一种基于图嵌入正则化的人脸线性判别分析方法。构造非监督最优类可分准则,基于图嵌入理论,求解该最优类可分准则下的最优投影向量,在非监督的图嵌入框架下利用样本局部类别信息提高人脸识别率,降低矩阵计算复杂度。在典型的人脸数... 提出一种基于图嵌入正则化的人脸线性判别分析方法。构造非监督最优类可分准则,基于图嵌入理论,求解该最优类可分准则下的最优投影向量,在非监督的图嵌入框架下利用样本局部类别信息提高人脸识别率,降低矩阵计算复杂度。在典型的人脸数据库上的实验证明了该方法的有效性。 展开更多
关键词 人脸识别 图嵌入 正则化 线性判别分析
在线阅读 下载PDF
正则化FDA的核化及与SVM的比较研究 被引量:1
8
作者 于春梅 潘泉 +1 位作者 程咏梅 张洪才 《计算机应用研究》 CSCD 北大核心 2010年第3期897-898,906,共3页
无论是Fisher判别分析(FDA)还是基于核的FDA(KFDA),在小样本情况下都会面临矩阵的病态问题,正则化技术是解决该问题的有效途径。为了便于研究正则化FDA与支持向量机(SVM)的关系,推导了一种正则化FDA的核化算法。将约束优化问题转换为对... 无论是Fisher判别分析(FDA)还是基于核的FDA(KFDA),在小样本情况下都会面临矩阵的病态问题,正则化技术是解决该问题的有效途径。为了便于研究正则化FDA与支持向量机(SVM)的关系,推导了一种正则化FDA的核化算法。将约束优化问题转换为对偶的优化问题,得到了与SVM相似的形式,分析了该核化算法与SVM的联系。针对Tenessee-Eastman(TE)过程的故障诊断结果表明,正则化KFDA的诊断效果明显好于LS-SVM。 展开更多
关键词 正则化 FISHER判别分析 核方法 凸优化 支持向量机
在线阅读 下载PDF
基于判别式分析和神经网络的特征选择方法 被引量:1
9
作者 武妍 杨洋 《计算机应用》 CSCD 北大核心 2006年第2期433-435,共3页
为了获得重要的特征集合,提出了一种基于判别式分析算法和神经网络的特征选择方法。通过最小化扩展互熵误差函数来训练神经网络,这一误差函数的使用减小了神经网络传输函数的导数,降低了输出敏感度。该方法首先利用判别式分析算法得到... 为了获得重要的特征集合,提出了一种基于判别式分析算法和神经网络的特征选择方法。通过最小化扩展互熵误差函数来训练神经网络,这一误差函数的使用减小了神经网络传输函数的导数,降低了输出敏感度。该方法首先利用判别式分析算法得到一个有序的特征队列,然后通过正则化神经网络进行特征的选择,特征选择过程是基于单个特征的移除带来验证数据集上分类误差变化这一原理。与其他基于不同原理的四种方法进行了比较,实验结果表明,利用该算法训练的网络能够获得较高分类准确率。 展开更多
关键词 特征选择 神经网络 判别式分析 正则化 分类
在线阅读 下载PDF
半监督正则化学习 被引量:2
10
作者 尹学松 胡恩良 《小型微型计算机系统》 CSCD 北大核心 2010年第12期2389-2393,共5页
研究半监督线性维数约减算法.与传统监督维数约减算法不同的是,半监督算法使用辅助信息和大量的无标号样本来达到更好的推广性能.在半监督框架下,本文的目标是学习一个光滑、有判别力的子空间.明确地说,使用cannot-link成对约束来最大... 研究半监督线性维数约减算法.与传统监督维数约减算法不同的是,半监督算法使用辅助信息和大量的无标号样本来达到更好的推广性能.在半监督框架下,本文的目标是学习一个光滑、有判别力的子空间.明确地说,使用cannot-link成对约束来最大化不同类样本之间的距离,使用must-link成对约束来最小化相同类样本之间的距离;同时使用无标号样本的几何结构和投影向量的特征结构作为正则化项来引导维数约减过程.并且,所提出算法能容易处理样本外问题.实验结果验证了新算法的有效性. 展开更多
关键词 半监督正则化 判别分析 特征结构 must-link约束散布 cannot-link约束散布
在线阅读 下载PDF
基于卡方核的正则化线性判别行人再识别算法 被引量:1
11
作者 雷大江 滕君 +1 位作者 王明达 吴渝 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期66-76,共11页
针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将... 针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。 展开更多
关键词 行人再识别 卡方核 正则化线性判别分析 核函数
在线阅读 下载PDF
基于FTIR技术和稀疏线性判别分析的秦艽种类鉴别 被引量:1
12
作者 李四海 余晓晖 +1 位作者 赵磊 晋玲 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第8期2390-2394,共5页
傅里叶变换红外光谱通常包含有大量的波长变量点,对其进行定性分析需要建立稳健的、可解释性的分类模型。稀疏线性判别分析(SLDA)是一种较为新颖和有效的机器学习算法,常用于高维度、小样本数据的变量筛选和判别分析,SLDA通过在线性判... 傅里叶变换红外光谱通常包含有大量的波长变量点,对其进行定性分析需要建立稳健的、可解释性的分类模型。稀疏线性判别分析(SLDA)是一种较为新颖和有效的机器学习算法,常用于高维度、小样本数据的变量筛选和判别分析,SLDA通过在线性判别分析中引入正则项,使分类器训练过程和变量选择过程同时完成,不同判别方向上载荷系数的稀疏性则增强了模型的可解释性。采集甘肃不同产地的秦艽样本94个,其中麻花秦艽(Gentiana straminea Maxim)30个,黄管秦艽(Gentiana officinalis)28个,大叶秦艽(Gentiana macrophylla Pall)36个,利用傅里叶变换红外光谱法获得所有样本的光谱图。取其中70个样本构成训练集,剩余24个为测试集。使用训练集建立SLDA模型,对2个判别方向上不为0的载荷系数个数进行网格化寻优,得到了最优的参数空间。利用建立的SLDA模型对测试样本进行预测,其分类准确率达到100%,实现了对三种秦艽的快速、准确鉴别。实验结果表明,与PLS-DA方法相比,SLDA模型在分类准确率、稀疏性及可解释性方面均具有一定优势,是一种新颖、有效的光谱定性分析方法。 展开更多
关键词 秦艽 傅里叶变换红外光谱 正则化 稀疏线性判别分析 变量选择
在线阅读 下载PDF
基于RTSMFE、M-KRCDA与COA-SVM的行星齿轮箱故障诊断 被引量:5
13
作者 戚晓利 崔创创 +2 位作者 杨艳 程主梓 陈旭 《振动与冲击》 EI CSCD 北大核心 2022年第21期109-120,共12页
针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized copl... 针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized coplanar discriminant analysis,M-KRCDA)以及郊狼优化算法优化支持向量机(coyote optimization algorithm-support vector machine,COA-SVM)的行星齿轮箱故障诊断方法。首先利用RTSMFE计算和组合行星齿轮箱原始故障信号的特征向量,构建原始高维故障特征集;然后采用M-KRCDA的特征筛选方法,减少了特征的维数并提高特征故障识别的准确性和效率;最后将低维特征输入到COA-SVM进行故障类型的判别。行星齿轮箱故障诊断试验结果分析表明,所提方法能够准确识别行星齿轮箱的常见故障,具有一定的应用前景。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移多尺度模糊熵(RTSMFE) 马氏距离的核正则化共面判别分析(M-KRCDA) 郊狼优化算法优化支持向量机(COA-SVM)
在线阅读 下载PDF
一种新型多核判别分析方法
14
作者 梁军 张飞云 +3 位作者 陈龙 李世浩 顾胜强 张婉婉 《西南交通大学学报》 EI CSCD 北大核心 2015年第6期1122-1129,共8页
为了给模式分类和维度约简提供有效的手段,在综合L1-MKDA和L2-MKDA两种多核KDA优点的基础上,提出一种以预定内核函数的线性组合,并结合混合范数正则化函数实现核权重的稀疏性和非稀疏性平衡的新型弹性多核判别分析方法(semi-infinite-pr... 为了给模式分类和维度约简提供有效的手段,在综合L1-MKDA和L2-MKDA两种多核KDA优点的基础上,提出一种以预定内核函数的线性组合,并结合混合范数正则化函数实现核权重的稀疏性和非稀疏性平衡的新型弹性多核判别分析方法(semi-infinite-programming-based flexible multi-kernel discriminant analysis,SFMKDA).该方法用半无限规划方法求解弹性多核判别分析算法,并通过混合正则化实现核的自学习.在不同数据集上的实验结果表明:S-FMKDA比目前常见的KDA、KDAP、KDAG、L1-MKDA、L2-MKDA、UMKDA核判别分析方法的精度提高5%. 展开更多
关键词 多核 判别分析 范数 正则化 半无限 规划 稀疏性
在线阅读 下载PDF
基于核正则化Fisher判据的故障诊断
15
作者 于春梅 潘泉 +1 位作者 程咏梅 张洪才 《计算机工程》 CAS CSCD 北大核心 2010年第23期1-3,共3页
Fisher判据分析(FDA)是工业过程故障诊断的常用降维算法,但其无法提取数据中的非线性关系。基于核的FDA(KFDA)是对FDA的非线性推广,但在FDA和KFDA小样本情况下都会面临矩阵的病态问题,正则化技术是解决该问题的有效途径。推导一种转化... Fisher判据分析(FDA)是工业过程故障诊断的常用降维算法,但其无法提取数据中的非线性关系。基于核的FDA(KFDA)是对FDA的非线性推广,但在FDA和KFDA小样本情况下都会面临矩阵的病态问题,正则化技术是解决该问题的有效途径。推导一种转化为方程组求解并表示成对偶形式的核正则化FDA算法,给出其用于故障诊断的流程,并针对TE过程的故障数据进行仿真。结果表明该核化算法的正确性及正则化在小样本下的有效性。 展开更多
关键词 故障诊断 正则化 Fisher判据分析 核方法
在线阅读 下载PDF
局部敏感判别直推学习机
16
作者 潘俊 孔繁胜 王瑞琴 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期987-994,共8页
为了充分挖掘样本内在的几何结构和蕴含的判别信息来指导样本数据分类,提出一种局部敏感的判别直推学习方法.该方法将局部敏感辨析(LSDA)的基本原理引入到直推学习中,在直推学习的正则化框架中同时引入有助于分类的样本局部结构信息和... 为了充分挖掘样本内在的几何结构和蕴含的判别信息来指导样本数据分类,提出一种局部敏感的判别直推学习方法.该方法将局部敏感辨析(LSDA)的基本原理引入到直推学习中,在直推学习的正则化框架中同时引入有助于分类的样本局部结构信息和判别信息,在判别信息指导下构建了类内图和类间图来刻画类内紧性和类间散性,从而在每个局部邻域中进一步最大化类间样本的间隔.同时,用数学的形式给出了目标函数的解析表达,在几个典型数据集上的实验结果表明,相较传统的基于图的半监督学习算法,该方法能取得更高的分类效果. 展开更多
关键词 局部敏感辨析 直推学习 图方法 正则化
在线阅读 下载PDF
基于规范化KDDA的人脸识别算法
17
作者 杨家红 史超 王耀南 《计算机工程与应用》 CSCD 北大核心 2007年第5期36-38,共3页
传统的PCA和LDA算法受限于“小样本问题”,且对像素的高阶相关性不敏感。论文将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量... 传统的PCA和LDA算法受限于“小样本问题”,且对像素的高阶相关性不敏感。论文将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量实验表明,该方法在特征提取方面优于PCA,KPCA,LDA等其他方法,在简化分类器的同时,也可以获得高识别率。 展开更多
关键词 核函数方法 规范化KDDA KPCA 小样本问题
在线阅读 下载PDF
神经元实时编码的分类和预测模型研究
18
作者 刘宇 王金华 《计算机工程与设计》 CSCD 北大核心 2010年第17期3868-3871,共4页
为了研究神经元放电的内在规律及解决传统线性分析方法不能对神经元采样数据进行有效分类的问题,提出了正则化线性判别分析法和最近收缩质心法。根据神经元数据自身的特点,设计了一个新的分析神经元放电频率的方法,并通过交叉验证比较... 为了研究神经元放电的内在规律及解决传统线性分析方法不能对神经元采样数据进行有效分类的问题,提出了正则化线性判别分析法和最近收缩质心法。根据神经元数据自身的特点,设计了一个新的分析神经元放电频率的方法,并通过交叉验证比较了各算法的正确性。实验结果表明了提出的新方法的有效性,证明了神经元放电活动的内在规律性以及利用对神经元集群放电活动的分析对外界刺激分类和预测的可行性。 展开更多
关键词 最近质心收缩方法 正则化线性判别分析 神经电活动 集群放电 交叉验证
在线阅读 下载PDF
基于改进R-LDA的ANN在人脸识别中的研究
19
作者 王果 廖建锋 《科学技术与工程》 北大核心 2013年第17期4999-5003,共5页
面部识别(FR)系统可以自动识别或校验从数码相机或图像生成设备中获得的人脸图像。为了做到这点,要从所获图像中提取面部特征,并与人脸数据库中的数据进行比对。目前,几乎所有的FR都面临与面部视角相关的障碍,包括光照不足和低分辨率,... 面部识别(FR)系统可以自动识别或校验从数码相机或图像生成设备中获得的人脸图像。为了做到这点,要从所获图像中提取面部特征,并与人脸数据库中的数据进行比对。目前,几乎所有的FR都面临与面部视角相关的障碍,包括光照不足和低分辨率,这些问题使其识别率大为降低。提出了一种经过全新衡量的标准化参数,它基于FR系统,能够提高在某些环境约束下的识别率。该方法基于常见的正规线性判别分析(R-LDA),并且包含了具有突出分类能力的可以提高人脸识别率的人工神经网络(ANN)。改进的R-LDA算法解决了在所有FR中出现的小样本容量(SSS)问题,同时,ANN对于检测人脸的正面图像很有用处。在ORL及FERET人脸数据库上进行了实验,结果表明,与其它的常用方法相比较,取得了更好的识别效果。 展开更多
关键词 人脸识别 正规线性判别分析 小样本容量 人工神经网络
在线阅读 下载PDF
一种光滑局部敏感鉴别分析方法
20
作者 徐春明 《计算机工程》 CAS CSCD 北大核心 2011年第13期190-192,共3页
传统的局部敏感鉴别分析方法未考虑原有图像样本像素关系信息,识别效果受到影响。为此,提出一种光滑局部敏感鉴别分析方法。针对图像样本构造一个基于离散拉谱拉斯图的正则化项,该正则化项包含图像像素关系的先验信息,并将其嵌入到局部... 传统的局部敏感鉴别分析方法未考虑原有图像样本像素关系信息,识别效果受到影响。为此,提出一种光滑局部敏感鉴别分析方法。针对图像样本构造一个基于离散拉谱拉斯图的正则化项,该正则化项包含图像像素关系的先验信息,并将其嵌入到局部敏感鉴别分析的目标函数中,使抽取的特征具有空间光滑的特性,从而增强局部敏感鉴别分析算法的泛化能力。在ORL和IMDB人脸数据集上的实验结果证明了该方法的有效性。 展开更多
关键词 局部敏感鉴别分析 光滑局部敏感鉴别分析 光滑正则化 特征抽取 人脸识别
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部