President Xi Jinping has constantly taken theeconomic development as the central work from theperspective of historical materialism and dialecticalmaterialism.He corresponds to the law of economicdevelopment,and accur...President Xi Jinping has constantly taken theeconomic development as the central work from theperspective of historical materialism and dialecticalmaterialism.He corresponds to the law of economicdevelopment,and accurately masters the important logicrelations between economy and politics,government andmarket.Meanwhile,he proposes that China should useoverall planning to deal with the difficulty of urban-ruralintegration so as to thoroughly solve the three agriculture-related issues.Then,it is possible to achieve the organicunity of purposiveness and regularity.展开更多
The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the v...The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the vicinity of numerical wave tank's boundary was forced towards the wave theoretical solution by incorporating momentum source terms,thereby reducing adverse effects such as wave reflection.Simulations utilizing laminar flow,turbulent flow,and ideal fluid models were all found capable of effectively capturing the waveform and bottom pressure of regular waves,agreeing well with experimental data.In predicting the bottom pressure field of the submerged vehicle,turbulent simulations considering fluid viscosity and boundary layer development provided more accurate predictions for the stern region than inviscid simulations.Due to sphere's diffractive effect,the sphere's bottom pressure field in waves is not a linear superposition of the wave's and the sphere's bottom pressure field.However,a slender submerged vehicle exhibits a weaker diffractive effect on waves,thus the submerged vehicle's bottom pressure field in waves can be approximated as a linear superposition of the wave's and the submerged vehicle's bottom pressure field,which simplifies computation and analysis.展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into ...The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into unexplored realms and accelerating progress in life sciences and medicine.CRISPR-based gene screening,recognized for its efficiency and practicality,is widely utilized across diverse biological fields.Aging is a multifaceted process governed by a myriad of genetic and epigenetic factors.Unraveling the genes regulating aging holds promise for understanding this intricate phenomenon and devising strategies for its assessment and intervention.This review provides a comprehensive overview of the progress in CRISPR screening and its applications in aging research,while also offering insights into future directions.CRISPR-based genetic-manipulation tools are positioned as indispensable instruments for mitigating aging and managing age-related diseases.展开更多
In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of th...In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of these air pollutants, the distributed regularity of the rock face temperature which is directly related to the air ventilation in deep open-pit mines should be studied. Here, we establish the key factors influencing the rock face temperature in a deep open-pit mine. We also present an empirical model of the rock face temperature variation in the deep open-pit mine, of which the performance is interestingly high compared with that of the field test. This study lays a foundation to study the ventilation thermodynamic theory in the deep open-pit mine, which is of great importance for theoretical studies and engineering applications of solving air pollution problem in deep open-pit mines.展开更多
Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iterat...Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.展开更多
The global climatic change study is a hot point today.As the pattern of the general circulation of the atmosphere is the key factor for climate,the reconstruction of the pattern of the past general circulation of the ...The global climatic change study is a hot point today.As the pattern of the general circulation of the atmosphere is the key factor for climate,the reconstruction of the pattern of the past general circulation of the atmosphere has become important part of the global climatic change study.The paleowind belts are the comprising part of the past general circulation of the atmosphere and also the records of the circulation,therefore,their reconstruction will be helpful to the reconstruction of the general circulation of the atmosphere.In present years,the pattern of the general circulation of the atmosphere has attracted great concern from scientists.For example,Zhang Linyuan and Liu Dongsheng, based on the existence and inexistence of the Tibetan Plateau and paleogeography,divide the evolution of the general circulation of the atmosphere in eastern asia into two stages:the planetary wind stage before the uplift of the plateau and the monsoon stage after the uplift of the plateau which is subdivided into ancient monsoon and modern monsoon stages.While Dong Guangrong et al., Jiang Xinsheng et al. and Cooke et al, based on the latitudinal distribution of the Cretaceous and Tertiary deserts and the generation of arid climate,suggest that there was a subtropical high pressure zone across the eastern asia and was a planetary wind system,but have not found any direct record of the circulation.It is true that before the Early Tertiary,not only organism, but also inorganism,i.e.,biogeography and lithogeography, show strong zonal distribution.It can only indicate that zonal climate was evident at that time.Of course, as the climate is the result of the influences on the ground by zones of the circulation,it is reasonable to deduce the existence of zonal circulation,i.e. the the existence of the planetary wind system,from the zonal climate.But it would be much better if direct record of planetary wind system were found.Prevailing winds are the main geological agent for a desert which must leave deep stamps on the desert.The stamps on modern desert are reflected by dune migrating directions and on paleodesert by foreset dip directions..It is the most direct geological record for reconstructing paleowind belts and has been extensively used to reconstruct paleowind belts,paleogeography,paleoclimate and even to check the paleolatitude determined by paleomagnetism (for example, Opdyke and Runcorn, 1960; Creer, 1958; Pook, 1962; Bigarella and Salamuni,1961).展开更多
The concept of water mass was carried within the early development ofoceanography and the analysis of water mass has so far become one of theimportant subjects of physical oceanography. The formation and charactersof ...The concept of water mass was carried within the early development ofoceanography and the analysis of water mass has so far become one of theimportant subjects of physical oceanography. The formation and charactersof ocean water mass are described and discussed at length in many famousbooks and classical textbooks on physical oceanography, such as "The Oceans"展开更多
From the viewpoint of system approach, karst drainage basin is the ideel unit in studying structure and evolutional regularity of karst hydrogeomorpholegical system, It is because the drainage basin is a natural unit ...From the viewpoint of system approach, karst drainage basin is the ideel unit in studying structure and evolutional regularity of karst hydrogeomorpholegical system, It is because the drainage basin is a natural unit with clear border which can reflect the internal structure and outside environment of the system and their interrelation. Through the research on karst hydrology and geomorphology, four basic characteristics of the karst drainage basin have been identified.展开更多
文摘President Xi Jinping has constantly taken theeconomic development as the central work from theperspective of historical materialism and dialecticalmaterialism.He corresponds to the law of economicdevelopment,and accurately masters the important logicrelations between economy and politics,government andmarket.Meanwhile,he proposes that China should useoverall planning to deal with the difficulty of urban-ruralintegration so as to thoroughly solve the three agriculture-related issues.Then,it is possible to achieve the organicunity of purposiveness and regularity.
文摘The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the vicinity of numerical wave tank's boundary was forced towards the wave theoretical solution by incorporating momentum source terms,thereby reducing adverse effects such as wave reflection.Simulations utilizing laminar flow,turbulent flow,and ideal fluid models were all found capable of effectively capturing the waveform and bottom pressure of regular waves,agreeing well with experimental data.In predicting the bottom pressure field of the submerged vehicle,turbulent simulations considering fluid viscosity and boundary layer development provided more accurate predictions for the stern region than inviscid simulations.Due to sphere's diffractive effect,the sphere's bottom pressure field in waves is not a linear superposition of the wave's and the sphere's bottom pressure field.However,a slender submerged vehicle exhibits a weaker diffractive effect on waves,thus the submerged vehicle's bottom pressure field in waves can be approximated as a linear superposition of the wave's and the submerged vehicle's bottom pressure field,which simplifies computation and analysis.
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
文摘The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into unexplored realms and accelerating progress in life sciences and medicine.CRISPR-based gene screening,recognized for its efficiency and practicality,is widely utilized across diverse biological fields.Aging is a multifaceted process governed by a myriad of genetic and epigenetic factors.Unraveling the genes regulating aging holds promise for understanding this intricate phenomenon and devising strategies for its assessment and intervention.This review provides a comprehensive overview of the progress in CRISPR screening and its applications in aging research,while also offering insights into future directions.CRISPR-based genetic-manipulation tools are positioned as indispensable instruments for mitigating aging and managing age-related diseases.
基金Project(51274023) supported by the National Natural Science Foundation of ChinaProject(FRF-BD-17-007A) supported by Fundamental Research Funds for the Central Universities,China
文摘In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of these air pollutants, the distributed regularity of the rock face temperature which is directly related to the air ventilation in deep open-pit mines should be studied. Here, we establish the key factors influencing the rock face temperature in a deep open-pit mine. We also present an empirical model of the rock face temperature variation in the deep open-pit mine, of which the performance is interestingly high compared with that of the field test. This study lays a foundation to study the ventilation thermodynamic theory in the deep open-pit mine, which is of great importance for theoretical studies and engineering applications of solving air pollution problem in deep open-pit mines.
基金Foundation item: Projects(60835005, 90820302) supported by the National Natural Science Foundation of China Project(2007CB311001) supported by the National Basic Research Program of China
文摘Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.
文摘The global climatic change study is a hot point today.As the pattern of the general circulation of the atmosphere is the key factor for climate,the reconstruction of the pattern of the past general circulation of the atmosphere has become important part of the global climatic change study.The paleowind belts are the comprising part of the past general circulation of the atmosphere and also the records of the circulation,therefore,their reconstruction will be helpful to the reconstruction of the general circulation of the atmosphere.In present years,the pattern of the general circulation of the atmosphere has attracted great concern from scientists.For example,Zhang Linyuan and Liu Dongsheng, based on the existence and inexistence of the Tibetan Plateau and paleogeography,divide the evolution of the general circulation of the atmosphere in eastern asia into two stages:the planetary wind stage before the uplift of the plateau and the monsoon stage after the uplift of the plateau which is subdivided into ancient monsoon and modern monsoon stages.While Dong Guangrong et al., Jiang Xinsheng et al. and Cooke et al, based on the latitudinal distribution of the Cretaceous and Tertiary deserts and the generation of arid climate,suggest that there was a subtropical high pressure zone across the eastern asia and was a planetary wind system,but have not found any direct record of the circulation.It is true that before the Early Tertiary,not only organism, but also inorganism,i.e.,biogeography and lithogeography, show strong zonal distribution.It can only indicate that zonal climate was evident at that time.Of course, as the climate is the result of the influences on the ground by zones of the circulation,it is reasonable to deduce the existence of zonal circulation,i.e. the the existence of the planetary wind system,from the zonal climate.But it would be much better if direct record of planetary wind system were found.Prevailing winds are the main geological agent for a desert which must leave deep stamps on the desert.The stamps on modern desert are reflected by dune migrating directions and on paleodesert by foreset dip directions..It is the most direct geological record for reconstructing paleowind belts and has been extensively used to reconstruct paleowind belts,paleogeography,paleoclimate and even to check the paleolatitude determined by paleomagnetism (for example, Opdyke and Runcorn, 1960; Creer, 1958; Pook, 1962; Bigarella and Salamuni,1961).
文摘The concept of water mass was carried within the early development ofoceanography and the analysis of water mass has so far become one of theimportant subjects of physical oceanography. The formation and charactersof ocean water mass are described and discussed at length in many famousbooks and classical textbooks on physical oceanography, such as "The Oceans"
文摘From the viewpoint of system approach, karst drainage basin is the ideel unit in studying structure and evolutional regularity of karst hydrogeomorpholegical system, It is because the drainage basin is a natural unit with clear border which can reflect the internal structure and outside environment of the system and their interrelation. Through the research on karst hydrology and geomorphology, four basic characteristics of the karst drainage basin have been identified.