In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The fac...A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes.展开更多
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
with the merits of the easy manufacture and the long service life and the processing the inside or outside form surface, round body form tool is extensive use in large scales production. Its main demerit is the big hy...with the merits of the easy manufacture and the long service life and the processing the inside or outside form surface, round body form tool is extensive use in large scales production. Its main demerit is the big hyperbolic error which is caused in the process of processing cone, but about the discussion of hyperbolic error, there are two drawbacks in the current books and documents: (1) The error measuring plane is established on the rake face of tool, which doesn’t coincide with the actual measuring plane (axial plane) of work piece; (2) When the influential elements of error are analyzed, single parameter is only discussed. In order to overcome these demerits, the mathematical model of hyperbolic error on the axial plane of work piece is built in this paper when round body form tool processes cone. The fundamental reason which causes hyperbolic error when round body form tool processes cone is that the line profile replaces the curve profile of theory in the radial cut plane of tool in the design and manufacture of tool. In order to evaluate the mathematical formula of its error, firstly, the equation of cone of work piece must be established, secondly, the equation of cutting lip in the rake face is established, then, the profile equation of the radial plane of tool is evaluated on the condition that coordinate is changed, at last, the hyperbolic error is derived according to the equation and the substitutional line equation, and the error is converted to the axial plane of work piece which is coincided with the measuring plane. The actual calculation and the theory analysis indicated that if the cone length and the coning of the cone of work piece are fixed, the main elements which affect the hyperbolic error in the axial plane of work piece are the outside diameter R of round body form tool, the rake angle and the rear angle in "base point". If these three parameters are combined rationally, the hyperbolic error is minimum when round body form tool process cone, and the machining precision of work piece can be improved, on the condition that neither the work capacity of the tool design nor the manufacture cost of tool increases.展开更多
In order to reduce casualties and property losses in a collision accident, thin-walled structure has been extensively used as energy absorber in crashworthiness design of train. With the help of energy absorber, colli...In order to reduce casualties and property losses in a collision accident, thin-walled structure has been extensively used as energy absorber in crashworthiness design of train. With the help of energy absorber, collision kinetic energy can be controllably dissipated by the plastic deformation of structures. A new kind of multi-cell thin-walled structure called as bitubular polygonal tubes with internal walls(BPTIW) was constructed. The crashworthiness characteristics of BPTIWs were investigated by LS-DYNA. It can be found that the BPTIW with 12 sides has the most excellent crashworthiness characteristics. Therefore, based on response surface method(RSM) and multiobjective particle optimization(MOPSO) algorithm, the BPTIW with 12 sides was selected to optimize the dimensions of cross-sectional configuration under different constraints of energy absorption(EA) and crushing peak force(CPF). The results show that the optimal designs of BPTIW12 under different constraints present excellent crashworthiness characteristics and can be used in the practical engineering.展开更多
In order to improve the crashworthiness of thin-walled columns, the energy absorption characteristics of three columns under quasi-static axial crushing loads were analyzed through LS-DYNA. Numerical results show that...In order to improve the crashworthiness of thin-walled columns, the energy absorption characteristics of three columns under quasi-static axial crushing loads were analyzed through LS-DYNA. Numerical results show that the energy absorption capability of the bitubular hexagonal columns with middle to middle(MTM) ribs is the best, followed by the bitubular hexagonal columns with corner to corner(CTC) ribs and the bitubular hexagonal columns without(NOT) ribs, respectively. Then, the MTM rib was optimized by using multi-objective particle swarm optimization algorithm. Through the analysis of the Pareto front for specific energy absorption(SEA, A_(se)) and peak crushing force(PCF, F_(pc)), it is found that there is a vertex on the Pareto front. The vertex has the design parameters of t_1=1.2 mm, t_2=1.2 mm, A_(se)=11.3729 k J/kg, F_(pc)=235.8491 kN. When the PCF is in a certain size, on the left of the vertex, the point with t_2=1.2 mm has the biggest SEA, meanwhile on the right of the vertex, the point with t_1=1.2 mm has the biggest SEA. Finally, the global sensitivity analysis was conducted to investigate the effect of two design parameters. The result is obtained that both SEA and PCF for MTM are more sensitive to t_1 rather than t_2 in the design domain.展开更多
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ...Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.展开更多
Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is stron...Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.展开更多
The weld quality is significantly affected by the weld parameters(arc voltage, welding current, nozzle to plate distance and welding speed) in the submerged arc welding(SAW). Bead-on-plate welds were performed on stai...The weld quality is significantly affected by the weld parameters(arc voltage, welding current, nozzle to plate distance and welding speed) in the submerged arc welding(SAW). Bead-on-plate welds were performed on stainless steel plates by automated SAW machine. The experimental data were collected in accordance with the response surface methodology(RSM). In addition to RSM, the regression analysis was performed to set up inputeoutput relationships in the SAW process. It was found that weld parameters define the geometry of weld bead and determine the mechanical properties of the joint. The influence of the input variables on weld bead geometry is represented as graphs. It was found that an increment in voltage increases the bead width but decreases the bead height, whereas the current increment result-in an increment in bead height and no change in bead width. The bead width and height decrease with the increment in the welding speed. With an increment in the nozzle-to-plate distance, bead width decrease, but bead height increases. The value of bead hardness increases with the increment in current but the increment in voltage and travel speed does not have a significant influence on the bead hardness. The predictions from the mathematical model developed and the corresponding experimental results are having a fair agreement. Further, the genetic algorithm(GA) is also used for predicting the weld bead geometry.展开更多
Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison ...Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.展开更多
Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The s...Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size, substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77 dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments.展开更多
Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new ...Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.展开更多
The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous opera...The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.展开更多
Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an ...Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an optimum combination of welding parameters is critical in achieving high weld quality and productivity. In this work, initially, the SAW experiments were performed using fractional factorial design to analyze the effect of direct and indirect input parameters, namely, welding voltage, wire feed rate,welding speed, nozzle to plate distance, flux condition, and plate thickness on weld bead geometrical responses viz. bead width, reinforcement, and penetration. The bead on plate technique was used to deposit weld metal on AISI 1023 steel plates. The effect of SAW input parameters on response variables were analyzed using main and interaction effects. The linear regression was used to develop the mathematical models for the response variable. Then, the multi-objective optimization of input parameters was carried out using desirability approach, genetic algorithm and Jaya algorithm. The Jaya algorithm offered better optimization results as compared to desirability approach, genetic algorithm.展开更多
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction st...A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.展开更多
Aiming at the problems of demagnetization effect of electromagnetic buffer(EMB)caused by high velocity under intensive impact load and the difficulty and error of machining composite thin-walled long tube,a segmented ...Aiming at the problems of demagnetization effect of electromagnetic buffer(EMB)caused by high velocity under intensive impact load and the difficulty and error of machining composite thin-walled long tube,a segmented EMB is proposed.The inner tube and air-gap are divided into initial segments and the traversing segments.Through theoretical analysis,impact test and simulation,it can be found that the RRF curve has two peaks.Firstly,in order to reduce the resultant resistance force(RRF)peaks,the sensitivity analysis based on optimal Latin hypercube design(OLHD)and polynomial regression was performed.The results show that the smallest contribution ratio to the dynamic response is the seventh and ninth segments of the inner tube,which are less than 1%.Then,fully considering the uncertain factors,important parameters are selected for uncertain optimization after sensitivity analysis.The interval order and interval probability degree methods are used to establish interval uncertain optimization model of the RRF considering robustness.The model was solved using an interval nested optimization method based on radial basis function(RBF)neural network.Finally,the Pareto front is obtained and numerical simulation is performed to verify the optimal value.It indicates that the two kinds of RRF peak is obviously reduced,and the optimization object and strategy are effective.展开更多
A new type of iron-based matrix formula as a potential substitute for traditional WC-based matrix formula for hot pressed diamond bit was investigated.Iron,phosphor-iron,663-Cu,nickel,cobalt and certain additives were...A new type of iron-based matrix formula as a potential substitute for traditional WC-based matrix formula for hot pressed diamond bit was investigated.Iron,phosphor-iron,663-Cu,nickel,cobalt and certain additives were selected as the studied formula constituents.Among matrix performances,the hardness and wear resistance were chosen as experimental indexes in this paper.Constrained uniform design method was used for the formula design of iron-based matrix.Two forms of regression models of matrix hardness and wear resistance were obtained by regression analysis using MATLAB.Moreover,the optimization of matrix formulae and matrix performances were also achieved through constrained nonlinear programming.It was found that matrix hardness,significantly affected by the factor of Ni-Co-additives and Fe,increased with the increment of Ni-Co-additives,Fe and P-Fe,but reduced with the increase of 663-Cu.On the other hand,matrix wear resistance is mainly affected by Fe;the effect of the interaction between Fe and P-Fe is also relatively obvious. The increment of 663-Cu powder may result in a slight improvement in matrix wear resistance.In addition,the results of nonlinear programming revealed that the predictive optimum value of hardness was 139.5 HRB and the optimum wear resistance was 0.056 g,whereas they could not reach the optimum value at the same time.展开更多
A finite element model of vehicle and its airbag landing attenuation system is established and verified experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while ...A finite element model of vehicle and its airbag landing attenuation system is established and verified experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while the height and width of airbag and the area of vent hole are chosen as design variables.The optimization is forced to compromise the design variables between the conflicting requirements of the two extremes.In order to optimize the parameters of airbag,the multi-dimensional response surfaces based on extended Latin hypercube design and radial basis function are employed instead of the complex finite element model.Pareto optimal solution sets based on response surfaces are then obtained by multi-objective genetic algorithm.The results show the optimization method presented in this paper is a practical tool for the optimization of airbag landing attenuation system for heavy airdrop.展开更多
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
基金supported by the Ministry of Higher Education, Malaysia (Grant No.UKM-AP-PLW-04-2009/2)
文摘A numerical procedure for reliability analysis of earth slope based on advanced first-order second-moment method is presented,while soil properties and pore water pressure may be considered as random variables.The factor of safety and performance function is formulated utilizing a new approach of the Morgenstern and Price method.To evaluate the minimum reliability index defined by Hasofer and Lind and corresponding critical probabilistic slip surface,a hybrid algorithm combining chaotic particle swarm optimization and harmony search algorithm called CPSOHS is presented.The comparison of the results of the presented method,standard particle swarm optimization,and selected other methods employed in previous studies demonstrates the superior successful functioning of the new method by evaluating lower values of reliability index and factor of safety.Moreover,the presented procedure is applied for sensitivity analysis and the obtained results show the influence of soil strength parameters and probability distribution types of random variables on the reliability index of slopes.
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
文摘with the merits of the easy manufacture and the long service life and the processing the inside or outside form surface, round body form tool is extensive use in large scales production. Its main demerit is the big hyperbolic error which is caused in the process of processing cone, but about the discussion of hyperbolic error, there are two drawbacks in the current books and documents: (1) The error measuring plane is established on the rake face of tool, which doesn’t coincide with the actual measuring plane (axial plane) of work piece; (2) When the influential elements of error are analyzed, single parameter is only discussed. In order to overcome these demerits, the mathematical model of hyperbolic error on the axial plane of work piece is built in this paper when round body form tool processes cone. The fundamental reason which causes hyperbolic error when round body form tool processes cone is that the line profile replaces the curve profile of theory in the radial cut plane of tool in the design and manufacture of tool. In order to evaluate the mathematical formula of its error, firstly, the equation of cone of work piece must be established, secondly, the equation of cutting lip in the rake face is established, then, the profile equation of the radial plane of tool is evaluated on the condition that coordinate is changed, at last, the hyperbolic error is derived according to the equation and the substitutional line equation, and the error is converted to the axial plane of work piece which is coincided with the measuring plane. The actual calculation and the theory analysis indicated that if the cone length and the coning of the cone of work piece are fixed, the main elements which affect the hyperbolic error in the axial plane of work piece are the outside diameter R of round body form tool, the rake angle and the rear angle in "base point". If these three parameters are combined rationally, the hyperbolic error is minimum when round body form tool process cone, and the machining precision of work piece can be improved, on the condition that neither the work capacity of the tool design nor the manufacture cost of tool increases.
基金Project(CX2016B047)supported by Hunan Provincial Innovation Foundation For Postgraduate,ChinaProjects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200403)supported by the National Key Research and Development Proguam of China
文摘In order to reduce casualties and property losses in a collision accident, thin-walled structure has been extensively used as energy absorber in crashworthiness design of train. With the help of energy absorber, collision kinetic energy can be controllably dissipated by the plastic deformation of structures. A new kind of multi-cell thin-walled structure called as bitubular polygonal tubes with internal walls(BPTIW) was constructed. The crashworthiness characteristics of BPTIWs were investigated by LS-DYNA. It can be found that the BPTIW with 12 sides has the most excellent crashworthiness characteristics. Therefore, based on response surface method(RSM) and multiobjective particle optimization(MOPSO) algorithm, the BPTIW with 12 sides was selected to optimize the dimensions of cross-sectional configuration under different constraints of energy absorption(EA) and crushing peak force(CPF). The results show that the optimal designs of BPTIW12 under different constraints present excellent crashworthiness characteristics and can be used in the practical engineering.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015ZZTS210,2015ZZTS045)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the crashworthiness of thin-walled columns, the energy absorption characteristics of three columns under quasi-static axial crushing loads were analyzed through LS-DYNA. Numerical results show that the energy absorption capability of the bitubular hexagonal columns with middle to middle(MTM) ribs is the best, followed by the bitubular hexagonal columns with corner to corner(CTC) ribs and the bitubular hexagonal columns without(NOT) ribs, respectively. Then, the MTM rib was optimized by using multi-objective particle swarm optimization algorithm. Through the analysis of the Pareto front for specific energy absorption(SEA, A_(se)) and peak crushing force(PCF, F_(pc)), it is found that there is a vertex on the Pareto front. The vertex has the design parameters of t_1=1.2 mm, t_2=1.2 mm, A_(se)=11.3729 k J/kg, F_(pc)=235.8491 kN. When the PCF is in a certain size, on the left of the vertex, the point with t_2=1.2 mm has the biggest SEA, meanwhile on the right of the vertex, the point with t_1=1.2 mm has the biggest SEA. Finally, the global sensitivity analysis was conducted to investigate the effect of two design parameters. The result is obtained that both SEA and PCF for MTM are more sensitive to t_1 rather than t_2 in the design domain.
基金Projects(70373017 70572090) supported by the National Natural Science Foundation of China
文摘Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.
文摘Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.
基金supported by PEC University, Punjab and Invertis University, Bareilly, (U.P.), India
文摘The weld quality is significantly affected by the weld parameters(arc voltage, welding current, nozzle to plate distance and welding speed) in the submerged arc welding(SAW). Bead-on-plate welds were performed on stainless steel plates by automated SAW machine. The experimental data were collected in accordance with the response surface methodology(RSM). In addition to RSM, the regression analysis was performed to set up inputeoutput relationships in the SAW process. It was found that weld parameters define the geometry of weld bead and determine the mechanical properties of the joint. The influence of the input variables on weld bead geometry is represented as graphs. It was found that an increment in voltage increases the bead width but decreases the bead height, whereas the current increment result-in an increment in bead height and no change in bead width. The bead width and height decrease with the increment in the welding speed. With an increment in the nozzle-to-plate distance, bead width decrease, but bead height increases. The value of bead hardness increases with the increment in current but the increment in voltage and travel speed does not have a significant influence on the bead hardness. The predictions from the mathematical model developed and the corresponding experimental results are having a fair agreement. Further, the genetic algorithm(GA) is also used for predicting the weld bead geometry.
基金Projects(50778181, 51178472) supported by the National Natural Science Foundation of China Project(2007045) supported by the Transportation Department of Hunan Province,China
文摘Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.
基金Project(60371046) supported by the National Natural Science Foundation of ChinaProject(9140C0301060C03001) supported by the National Defense Science and Technology Foundation of Key Laboratory, China
文摘Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size, substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77 dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments.
基金supported by the Key Foundation of Southwest University for Nationalities(09NZD001).
文摘Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.
基金Project(51275024)supported by the National Natural Science Foundations of ChinaProject(2015M580037)supported by China’s Postdoctoral Science FundingProjects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program Foundations,China
文摘The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.
文摘Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an optimum combination of welding parameters is critical in achieving high weld quality and productivity. In this work, initially, the SAW experiments were performed using fractional factorial design to analyze the effect of direct and indirect input parameters, namely, welding voltage, wire feed rate,welding speed, nozzle to plate distance, flux condition, and plate thickness on weld bead geometrical responses viz. bead width, reinforcement, and penetration. The bead on plate technique was used to deposit weld metal on AISI 1023 steel plates. The effect of SAW input parameters on response variables were analyzed using main and interaction effects. The linear regression was used to develop the mathematical models for the response variable. Then, the multi-objective optimization of input parameters was carried out using desirability approach, genetic algorithm and Jaya algorithm. The Jaya algorithm offered better optimization results as compared to desirability approach, genetic algorithm.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
文摘A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.
基金the National Natural Science Foundation of China(grant number 301070603)。
文摘Aiming at the problems of demagnetization effect of electromagnetic buffer(EMB)caused by high velocity under intensive impact load and the difficulty and error of machining composite thin-walled long tube,a segmented EMB is proposed.The inner tube and air-gap are divided into initial segments and the traversing segments.Through theoretical analysis,impact test and simulation,it can be found that the RRF curve has two peaks.Firstly,in order to reduce the resultant resistance force(RRF)peaks,the sensitivity analysis based on optimal Latin hypercube design(OLHD)and polynomial regression was performed.The results show that the smallest contribution ratio to the dynamic response is the seventh and ninth segments of the inner tube,which are less than 1%.Then,fully considering the uncertain factors,important parameters are selected for uncertain optimization after sensitivity analysis.The interval order and interval probability degree methods are used to establish interval uncertain optimization model of the RRF considering robustness.The model was solved using an interval nested optimization method based on radial basis function(RBF)neural network.Finally,the Pareto front is obtained and numerical simulation is performed to verify the optimal value.It indicates that the two kinds of RRF peak is obviously reduced,and the optimization object and strategy are effective.
文摘A new type of iron-based matrix formula as a potential substitute for traditional WC-based matrix formula for hot pressed diamond bit was investigated.Iron,phosphor-iron,663-Cu,nickel,cobalt and certain additives were selected as the studied formula constituents.Among matrix performances,the hardness and wear resistance were chosen as experimental indexes in this paper.Constrained uniform design method was used for the formula design of iron-based matrix.Two forms of regression models of matrix hardness and wear resistance were obtained by regression analysis using MATLAB.Moreover,the optimization of matrix formulae and matrix performances were also achieved through constrained nonlinear programming.It was found that matrix hardness,significantly affected by the factor of Ni-Co-additives and Fe,increased with the increment of Ni-Co-additives,Fe and P-Fe,but reduced with the increase of 663-Cu.On the other hand,matrix wear resistance is mainly affected by Fe;the effect of the interaction between Fe and P-Fe is also relatively obvious. The increment of 663-Cu powder may result in a slight improvement in matrix wear resistance.In addition,the results of nonlinear programming revealed that the predictive optimum value of hardness was 139.5 HRB and the optimum wear resistance was 0.056 g,whereas they could not reach the optimum value at the same time.
文摘A finite element model of vehicle and its airbag landing attenuation system is established and verified experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while the height and width of airbag and the area of vent hole are chosen as design variables.The optimization is forced to compromise the design variables between the conflicting requirements of the two extremes.In order to optimize the parameters of airbag,the multi-dimensional response surfaces based on extended Latin hypercube design and radial basis function are employed instead of the complex finite element model.Pareto optimal solution sets based on response surfaces are then obtained by multi-objective genetic algorithm.The results show the optimization method presented in this paper is a practical tool for the optimization of airbag landing attenuation system for heavy airdrop.
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.