To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented...To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented. This scheme is region-based and mainly focuses on two issues. Firstly, an appropriate segmentation algorithm is developed to partition an image into some irregular regions and tidy contours, where the crucial regions corresponding to objects are retained and a lot of tiny parts are eliminated. The irregular regions and contours are coded using different methods respectively in the next step. The other issue is the coding method of contours where an efficient and novel chain code is employed. This scheme tries to find a compromise between the quality of reconstructed images and the compression ratio. Some principles and experiments are conducted and the results show its higher performance compared with other compression technologies, in terms of higher quality of reconstructed images, higher compression ratio and less time consuming.展开更多
To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize tr...To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.展开更多
If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC cod...If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC codes with 16QAM/64QAM modulation to improve both efficiency and reliability. Simulaton results show that LDPC codes are good coding schemes over fading channel in image communication with lower system complexity. More over, irregular codes can obtain a code gain of about 0.7 dB compared with regular ones when BER is 10 -4. So the irregular LDPC codes are more suitable for image transmission than the regular codes.展开更多
With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acqui...With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques.展开更多
In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is signif...In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.展开更多
A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm a...A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is i...This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is inferior only to the best transform KLT. Its vector quantization can maintain the minimum quantization distortions and greatly increase the compression ratio. In order to improve compression efficiency, an adaptive strategy of selecting reserved region patterns is applied to preserving the high energy at the same compression ratio. The experiment results show that they are satisfactory at the compression ration ratio if greater than 20.展开更多
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy d...Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.展开更多
This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detectio...This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images.展开更多
The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it int...The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results.展开更多
基金supported by the National Science Foundation of China(60872109)the Program for New Century Excellent Talents in University(NCET-06-0900)
文摘To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented. This scheme is region-based and mainly focuses on two issues. Firstly, an appropriate segmentation algorithm is developed to partition an image into some irregular regions and tidy contours, where the crucial regions corresponding to objects are retained and a lot of tiny parts are eliminated. The irregular regions and contours are coded using different methods respectively in the next step. The other issue is the coding method of contours where an efficient and novel chain code is employed. This scheme tries to find a compromise between the quality of reconstructed images and the compression ratio. Some principles and experiments are conducted and the results show its higher performance compared with other compression technologies, in terms of higher quality of reconstructed images, higher compression ratio and less time consuming.
基金supported by the National Natural Science Foundationof China (60702012)the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry
文摘To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.
文摘If the degree distribution is chosen carefully, the irregular low-density parity-check (LDPC) codes can outperform the regular ones. An image transmission system is proposed by combining regular and irregular LDPC codes with 16QAM/64QAM modulation to improve both efficiency and reliability. Simulaton results show that LDPC codes are good coding schemes over fading channel in image communication with lower system complexity. More over, irregular codes can obtain a code gain of about 0.7 dB compared with regular ones when BER is 10 -4. So the irregular LDPC codes are more suitable for image transmission than the regular codes.
基金This project was supported by the National Natural Science Foundation (No. 69972027).
文摘With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques.
文摘In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.
文摘A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
文摘This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is inferior only to the best transform KLT. Its vector quantization can maintain the minimum quantization distortions and greatly increase the compression ratio. In order to improve compression efficiency, an adaptive strategy of selecting reserved region patterns is applied to preserving the high energy at the same compression ratio. The experiment results show that they are satisfactory at the compression ration ratio if greater than 20.
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.
文摘Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.
基金supported by the National Natural Science Foundation of China (61271375)BIT Foundation (2012CX04054)
文摘This paper proposes an application of compressive imaging systems to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compressive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evaluate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algorithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random binary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images.
基金Supported by the Zhejiang Provincial"Jianbing"and"Lingyan"R&D Programs(2023C03012,2024C01126)。
文摘The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results.