Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system ca...Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.展开更多
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th...Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.展开更多
基金supported by the National Natural Science Foundation of China (71071020 60705036)Beijing Excellent Doctoral Dissertation Instructor Project of Humanities and Social Sciences(yb20091000701)
文摘Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.
文摘Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.