A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refracti...A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.展开更多
Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of t...Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.展开更多
A nearly perfect metamaterial absorber is proposed that can find utility in terahertz sensing applications.The design consists of two concentric elliptical ring resonators(ERRs)whose parameters are appropriately set t...A nearly perfect metamaterial absorber is proposed that can find utility in terahertz sensing applications.The design consists of two concentric elliptical ring resonators(ERRs)whose parameters are appropriately set to achieve dual band absorption with near perfect absorption.The first absorption band at 3.62 THz having a Q-factor of 51.7 was caused due to the currents in the outer and inner ERR.The second absorption peak at 3.814 THz having a Q factor of 1411.11 was a consequence of currents flowing across the gap between the two concentric resonators.Furthermore,it is observed that the absorption bands are sensitive to the variation in refractive index of the surrounding medium.The sensitivity's in the absorption bands are 3 THz/RIU and 3.59 THz/RIU respectively.A sensor is proposed based on this design to detect harmful gases,which is demonstrated for detection of Methane and Chloroform.High Q-factor and high sensitivity of the narrow band makes the design an excellent sensor for detecting variations in the refractive index.展开更多
The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the ...The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data.展开更多
It is shown that the deflection of star light passing by the Sun, which is allegedly explainable only by general relativity, can be understood quantitatively as a quasi-classical effect of light refraction in the vac...It is shown that the deflection of star light passing by the Sun, which is allegedly explainable only by general relativity, can be understood quantitatively as a quasi-classical effect of light refraction in the vacuum polarized by the Sun's gravitational field. The theory of the dielectric polarization of the vacuum proposed pre- viously is further developed for the corresponding effect of the polarization of the vacuum in a gravitational field. The resulting refractive index of the vacuum in the presence of a gravitational field gives for the deflection of light by the Sun an angle |0| = 1.77', which is in good agreement with the experimental observations and the result of general relativity. From the theory Presented, it can also be deduced that the velocity of a horizontal light beam at 1000 km above ground level of the Earth has a velocity deficit - c= 5.73 cm / s in comparison to the light velocity on the ground.展开更多
文摘A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.
文摘Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.
文摘A nearly perfect metamaterial absorber is proposed that can find utility in terahertz sensing applications.The design consists of two concentric elliptical ring resonators(ERRs)whose parameters are appropriately set to achieve dual band absorption with near perfect absorption.The first absorption band at 3.62 THz having a Q-factor of 51.7 was caused due to the currents in the outer and inner ERR.The second absorption peak at 3.814 THz having a Q factor of 1411.11 was a consequence of currents flowing across the gap between the two concentric resonators.Furthermore,it is observed that the absorption bands are sensitive to the variation in refractive index of the surrounding medium.The sensitivity's in the absorption bands are 3 THz/RIU and 3.59 THz/RIU respectively.A sensor is proposed based on this design to detect harmful gases,which is demonstrated for detection of Methane and Chloroform.High Q-factor and high sensitivity of the narrow band makes the design an excellent sensor for detecting variations in the refractive index.
文摘The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data.
文摘It is shown that the deflection of star light passing by the Sun, which is allegedly explainable only by general relativity, can be understood quantitatively as a quasi-classical effect of light refraction in the vacuum polarized by the Sun's gravitational field. The theory of the dielectric polarization of the vacuum proposed pre- viously is further developed for the corresponding effect of the polarization of the vacuum in a gravitational field. The resulting refractive index of the vacuum in the presence of a gravitational field gives for the deflection of light by the Sun an angle |0| = 1.77', which is in good agreement with the experimental observations and the result of general relativity. From the theory Presented, it can also be deduced that the velocity of a horizontal light beam at 1000 km above ground level of the Earth has a velocity deficit - c= 5.73 cm / s in comparison to the light velocity on the ground.