Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-...Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-wavelength (λ/4) cancelation. Combining with the face reflection calculation, we identify the electromagnetic loss originated from skin effect, which is used to explain over half of the absorbed energy in high frequency band. Most impor- tantly, the unique electromagnetic loss cannot generate the reflection loss (RL) peak. Using the phase relation of face reflection, we show evidence that the λ/4 cancelation is vital to generate the RL peak. The calculated energy loss agrees well with the experimental data and lays the foundation for further research.展开更多
The easy-plane anisotropy of the Y_(2)Co_(17)rare earth soft magnetic alloy has high saturation magnetization and operating frequency,and good impedance matching.Therefore,it is expected to become a kind of high-perfo...The easy-plane anisotropy of the Y_(2)Co_(17)rare earth soft magnetic alloy has high saturation magnetization and operating frequency,and good impedance matching.Therefore,it is expected to become a kind of high-performance microwave absorbing material.In this paper,Y_(2)Co_(17)alloy was prepared by a reduction-diffusion method,and its micropowder was prepared as polyurethane(PU)based composite absorbing materials(Y_(2)Co_(17)/PU composites).The microwave properties of composites with different volume fractions were calculated.The composites showed outstanding absorption characteristics in the range of 20-30 vol%,and the minimum reflection loss(RL)was less than-50 d B.When the volume fraction was25%,the effective absorption bandwidth could cover the X-band at a thickness of 1.5 mm,and the Ku-band at a thickness of1.08 mm.The absorption mechanism was analyzed by the interface reflection model.The RL absorption peak bandwidth mechanism was discussed by using the amplitude relation and calculating the effective absorption bandwidth at different thicknesses.The effective absorption bandwidth values were in good agreement with the theoretical expectation.展开更多
基金Supported by the Fundamental Research Fund for the Central Universities under Grant No LZUJBKY-2015-121the National Natural Science Foundations of China under Grant Nos 11574122 and 51102124the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China
文摘Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-wavelength (λ/4) cancelation. Combining with the face reflection calculation, we identify the electromagnetic loss originated from skin effect, which is used to explain over half of the absorbed energy in high frequency band. Most impor- tantly, the unique electromagnetic loss cannot generate the reflection loss (RL) peak. Using the phase relation of face reflection, we show evidence that the λ/4 cancelation is vital to generate the RL peak. The calculated energy loss agrees well with the experimental data and lays the foundation for further research.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB3501302)the National Natural Science Foundation of China(Grant No.51731001)supported by the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s key of research and development projects。
文摘The easy-plane anisotropy of the Y_(2)Co_(17)rare earth soft magnetic alloy has high saturation magnetization and operating frequency,and good impedance matching.Therefore,it is expected to become a kind of high-performance microwave absorbing material.In this paper,Y_(2)Co_(17)alloy was prepared by a reduction-diffusion method,and its micropowder was prepared as polyurethane(PU)based composite absorbing materials(Y_(2)Co_(17)/PU composites).The microwave properties of composites with different volume fractions were calculated.The composites showed outstanding absorption characteristics in the range of 20-30 vol%,and the minimum reflection loss(RL)was less than-50 d B.When the volume fraction was25%,the effective absorption bandwidth could cover the X-band at a thickness of 1.5 mm,and the Ku-band at a thickness of1.08 mm.The absorption mechanism was analyzed by the interface reflection model.The RL absorption peak bandwidth mechanism was discussed by using the amplitude relation and calculating the effective absorption bandwidth at different thicknesses.The effective absorption bandwidth values were in good agreement with the theoretical expectation.