Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the li...A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.展开更多
为了精确计算感应电机转子上的涡流损耗并探讨定子开槽对其产生的影响,对于额定功率为2.2 k W极对数为4的小型铸铝转子感应电机中转子涡流损耗情况进行了详细分析。通过建立不同定子槽开口的电机模型,结合电机内谐波磁场的理论分析与二...为了精确计算感应电机转子上的涡流损耗并探讨定子开槽对其产生的影响,对于额定功率为2.2 k W极对数为4的小型铸铝转子感应电机中转子涡流损耗情况进行了详细分析。通过建立不同定子槽开口的电机模型,结合电机内谐波磁场的理论分析与二维有限元的计算方法,研究了电机气隙谐波磁场与定子槽开口的关系,揭示了转子中不同位置的磁密与涡电流分布情况,并对比分析了不同槽开口模型中转子铁心与导条中涡流损耗的大小关系。仿真结果表明:气隙中的谐波磁场以及转子铁心表面的涡电流密度都随着定子槽开口增大而增大;转子铁心及导条中的涡流损耗随定子槽开口的增大呈二次函数的增长趋势。展开更多
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
文摘A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.
文摘为了精确计算感应电机转子上的涡流损耗并探讨定子开槽对其产生的影响,对于额定功率为2.2 k W极对数为4的小型铸铝转子感应电机中转子涡流损耗情况进行了详细分析。通过建立不同定子槽开口的电机模型,结合电机内谐波磁场的理论分析与二维有限元的计算方法,研究了电机气隙谐波磁场与定子槽开口的关系,揭示了转子中不同位置的磁密与涡电流分布情况,并对比分析了不同槽开口模型中转子铁心与导条中涡流损耗的大小关系。仿真结果表明:气隙中的谐波磁场以及转子铁心表面的涡电流密度都随着定子槽开口增大而增大;转子铁心及导条中的涡流损耗随定子槽开口的增大呈二次函数的增长趋势。