期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于多模态特征小波分解的深度学习股价概率预测
1
作者 张永宇 郭晨娟 魏涵玥 《计算机科学》 北大核心 2025年第S1期758-768,共11页
构建了一种创新的基于多模态特征小波分解的深度学习股价概率预测模型(MWDPF)。该模型融合了动态连续特征、动态分类特征、静态连续特征和静态分类特征等多源异构信息,通过并行融合的策略充分挖掘不同特征子空间的互补信息,全面刻画影... 构建了一种创新的基于多模态特征小波分解的深度学习股价概率预测模型(MWDPF)。该模型融合了动态连续特征、动态分类特征、静态连续特征和静态分类特征等多源异构信息,通过并行融合的策略充分挖掘不同特征子空间的互补信息,全面刻画影响股价波动的多重维度。该模型采用自回归递归神经网络架构,能够直接输出股价变化的概率分布预测,而非单一确定值预测,更加贴近实际股价呈概率分布的特征。另外,该模型引入小波分解技术,对原始时间序列进行去噪,自适应地过滤掉不同尺度下的噪声成分,提高了对内在波动规律的捕捉能力。实证分析阶段,采集了来自金融数据库和互联网论坛的多模态数据,通过缺失值填充、去极值、时间对齐等一系列预处理,以及精心的特征工程和模型优化,实现了优秀的预测性能,显著优于传统的统计学模型和深度学习模型,评价指标均有大幅改善。该模型产生的预测结果被用于构建了一个多因子选股策略,在实际回测中取得了可观的超额收益,进一步验证了该模型在实际投资决策中的有效性。该研究为股价预测提供了一种行之有效的解决方案,丰富了量化投资的理论和方法,具有重要的理论意义和应用价值。 展开更多
关键词 概率密度预测 多模态异构特征融合 小波分解时频分析 自回归递归神经网络 投资组合超额收益
在线阅读 下载PDF
基于RWNN补偿的下肢外骨骼滑模控制 被引量:2
2
作者 张燕 王岩 +2 位作者 陈玲玲 刘作军 张瑞鑫 《控制工程》 CSCD 北大核心 2023年第1期39-46,共8页
针对下肢外骨骼系统精确动力学模型难以得到,且易受干扰等不确定性因素影响,提出一种基于递归小波神经网络(recurrent wavelet neural network,RWNN)补偿的滑模控制方法。结合拉格朗日原理和气动肌肉驱动特性,建立外骨骼系统模型,并将... 针对下肢外骨骼系统精确动力学模型难以得到,且易受干扰等不确定性因素影响,提出一种基于递归小波神经网络(recurrent wavelet neural network,RWNN)补偿的滑模控制方法。结合拉格朗日原理和气动肌肉驱动特性,建立外骨骼系统模型,并将模型分为结构参数已知的标称部分和结构参数未知的不确定部分;对于标称部分,采用滑模控制方法进行控制,对于不确定部分,采用递归小波神经网络进行逼近;根据Lyapunov稳定性原理,证明了闭环控制系统的稳定性。搭建实验平台进行验证,结果表明外骨骼系统能够较好地跟踪期望轨迹,验证了所提控制方法的有效性。 展开更多
关键词 下肢外骨骼 气动肌肉 滑模控制 递归小波神经网络
在线阅读 下载PDF
基于SRWNN-FTSM的舰载火箭炮火控系统研究 被引量:1
3
作者 李俊杰 侯远龙 +2 位作者 高强 李佳恬 何禹锟 《火力与指挥控制》 CSCD 北大核心 2020年第7期99-104,共6页
针对舰载火箭炮大功率交流伺服系统存在的非线性特性以及不确定扰动,提出了一种自回归小波神经网络快速终端滑模控制器(SRWNN-FTSM)。基于快速终端滑模强鲁棒性特点,用自回归小波神经网络对模型动态自适应逼近,可有效提高响应速度,鲁棒... 针对舰载火箭炮大功率交流伺服系统存在的非线性特性以及不确定扰动,提出了一种自回归小波神经网络快速终端滑模控制器(SRWNN-FTSM)。基于快速终端滑模强鲁棒性特点,用自回归小波神经网络对模型动态自适应逼近,可有效提高响应速度,鲁棒性。利用SRWNN-FTSM控制器,有效克服了负载扰动、参数变化等不确定因素的影响。根据Lyapunov理论证明了闭环系统稳定性。仿真实验表明:所提方案可以有效提高系统的响应速度以及发射的命中精度。 展开更多
关键词 小波神经网络 滑模控制 舰载火箭炮 自回归
在线阅读 下载PDF
基于GA-SLFRWNN的空中目标威胁评估 被引量:6
4
作者 陈侠 刘子龙 梁红利 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第2期424-432,共9页
针对空战中目标威胁评估系统非线性、评估难度大且富含不确定信息的问题,研究了基于遗传算法优化模糊递归小波神经网络(single-hidden-layer fuzzy recurrent wavelet neural network optimized by genetic algorithm,GA-SLFRWNN)的目... 针对空战中目标威胁评估系统非线性、评估难度大且富含不确定信息的问题,研究了基于遗传算法优化模糊递归小波神经网络(single-hidden-layer fuzzy recurrent wavelet neural network optimized by genetic algorithm,GA-SLFRWNN)的目标威胁评估方法。首先通过分析威胁评估的影响因素及其信息的模糊性,将RWNN嵌入FNN的后件部分,以实现增强自学习能力的目的,然后采用GA对模型初始参数进行优化选取,并提出了基于李雅普诺夫理论的最优学习率。仿真实验表明:相比于FNN和FRWNN,该算法提高了系统的稳定性,加快了收敛速度,增强了预测精度。 展开更多
关键词 目标威胁评估 模糊神经网络 模糊递归小波神经网络 遗传算法 最优学习率
在线阅读 下载PDF
基于SRWNN-ADRC的交流伺服系统定位控制
5
作者 李佳恬 高强 +2 位作者 侯润民 侯远龙 李俊杰 《电光与控制》 CSCD 北大核心 2021年第1期98-102,111,共6页
针对高炮位置交流伺服系统控制存在的外界扰动以及非线性特性等问题,提出了一种自回归小波神经网络改进型单神经元自抗扰控制器(SRWNN-ADRC)。单神经元自适应控制器(SNAC)将非线性误差反馈控制律中的非线性增益作为其权值系数,利用SRWN... 针对高炮位置交流伺服系统控制存在的外界扰动以及非线性特性等问题,提出了一种自回归小波神经网络改进型单神经元自抗扰控制器(SRWNN-ADRC)。单神经元自适应控制器(SNAC)将非线性误差反馈控制律中的非线性增益作为其权值系数,利用SRWNN作为辨识器,在线辨识被控对象的梯度信息并将其提供给SNAC。通过SNAC的自学习功能实现ADRC中参数的在线调节。仿真结果证明,此控制策略使系统具有较好的稳态性能,抗干扰能力强,且动态品质也得到了优化。 展开更多
关键词 自回归小波神经网络 交流伺服控制 自抗扰控制 在线整定
在线阅读 下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制 被引量:1
6
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 自回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
在线阅读 下载PDF
柔性铰接板振动视觉测量与小波神经网络控制
7
作者 邱志成 刘一鸿 李旻 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期998-1010,共13页
为了解决航天器上用于供能的太阳帆板类柔性薄板结构的振动问题,针对一种移动柔性铰接板系统构建了双目视觉系统的振动测控实验平台,采用双目立体视觉方法来检测振动,并设计了自回归小波神经网络控制器(Self-Recurrent Wavelet Neural N... 为了解决航天器上用于供能的太阳帆板类柔性薄板结构的振动问题,针对一种移动柔性铰接板系统构建了双目视觉系统的振动测控实验平台,采用双目立体视觉方法来检测振动,并设计了自回归小波神经网络控制器(Self-Recurrent Wavelet Neural Network Controller,SRWNNC)来抑制振动。对双目视觉系统进行了标定,基于视差原理和图像处理算法,通过解算标志点的三维坐标来获取振动信号。建立了系统的有限元模型,并通过辨识得到校正后的系统模型参数。基于辨识得到的模型在仿真环境中训练SRWNNC,用于实验系统的振动主动控制。分别针对移动柔性铰接板系统固定基座和平移轨迹运动两种情况,进行了双目视觉振动检测和振动控制仿真和实验研究。仿真和实验结果表明,双目视觉传感器对振动信号的检测精度小于0.1 mm,SRWNNC也展现出比大增益PD控制器更好的抑振效果,验证了双目视觉振动检测和SRWNNC抑制振动的准确性和有效性。 展开更多
关键词 双目视觉 移动柔性铰接板 自回归小波神经网络 振动抑制
在线阅读 下载PDF
基于多图超分辨率重建的精细导星仪星点质心定位精度提升方法 被引量:2
8
作者 王雯蕊 张泉 +2 位作者 高源蓬 房陈岩 尹达一 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期306-314,共9页
精细导星仪的星点质心定位精度决定了空间天文望远镜的视轴姿态解算精度,为了提升精细导星仪的星点质心定位精度,提出了一种基于深度小波循环神经网络的星图超分辨率重建方法。首先,借助微扫描技术获取亚像素错位低分辨率星图序列,采用... 精细导星仪的星点质心定位精度决定了空间天文望远镜的视轴姿态解算精度,为了提升精细导星仪的星点质心定位精度,提出了一种基于深度小波循环神经网络的星图超分辨率重建方法。首先,借助微扫描技术获取亚像素错位低分辨率星图序列,采用小波编码器提取低分辨率星图的小波域特征,通过小波系数约束低分辨率星图的噪声,并将亚像素错位星图序列配准过程融入到网络学习中。其次,利用卷积门循环神经单元对所提取的多星图序列特征进行融合。最后,使用逆小波解码器对多特征融合模块输出的小波域特征进行解码,从而实现基于低分辨率星图序列的去噪与超分辨率重建。实验结果表明,分别采用平方加权质心法求取原始星图和超分辨率重建后星图中的各星点的质心位置,相比于前者,后者的各星点平均质心定位精度和稳定度在X方向分别提升了64.76%和19.15%,在Y方向分别提升了75.35%和26.14%。 展开更多
关键词 精细导星仪 星点质心定位 超分辨率重建 小波信号处理 卷积门循环神经网络
在线阅读 下载PDF
基于CNN-GRU模型的中欧班列运到时限预测 被引量:1
9
作者 张永祥 谷丽婷 +3 位作者 郭经纬 闫旭 冯涛 钟庆伟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期3989-4001,共13页
随着经济贸易的全球化发展,中欧班列已经成为重要的国际货运方式。由于中欧班列的运到时限受诸多因素影响,现有模型难以充分捕捉运输时间数据的复杂特征关系,因而无法准确预测列车运到时限,影响中欧班列的调度及沿线运力的安排。提出一... 随着经济贸易的全球化发展,中欧班列已经成为重要的国际货运方式。由于中欧班列的运到时限受诸多因素影响,现有模型难以充分捕捉运输时间数据的复杂特征关系,因而无法准确预测列车运到时限,影响中欧班列的调度及沿线运力的安排。提出一种基于卷积神经网络(CNN)和门控循环单元(GRU)的中欧班列运到时限预测方法,该方法能有效捕捉运到时间序列的空间及时间特征,从而提高预测精度。所提方法首先利用小波变换技术对中欧班列运到时限历史数据进行降噪处理,再经过最大−最小归一化、多粒度扫描窗及数据划分后,通过一维CNN模块提取输入时间序列的空间特征,GRU模块提取序列的时间特征,最后输出中欧班列运到时限的预测值。在实验部分进行了模型的参数调优、小波变换去噪效果分析及模型对比。结果显示,经小波变换去噪处理后,CNN-GRU模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低了34.18%和26.77%;模型的RMSE和MAE比单一模型中预测效果表现最好的随机森林(RF)分别降低了17.28%和21.67%,比组合模型CNN-LSTM分别降低了5.68%和15.70%。本文所构建的CNN-GRU模型对于小样本复杂数据的预测性能较高,且模型训练参数较少,轻量化程度较高,可解释性较强。基于该模型的中欧班列运到时限预测方法提高了运到时限预测的准确性,能够为缓解中欧班列路网运力不足等现状提供较为可靠的技术支持。 展开更多
关键词 铁路运输 中欧班列 列车运到时限预测 CNN-GRU 小波变换
在线阅读 下载PDF
基于CGDNN的低信噪比自动调制识别方法 被引量:4
10
作者 周顺勇 陆欢 +2 位作者 胡琴 彭梓洋 张航领 《计算机应用研究》 CSCD 北大核心 2024年第8期2489-2495,共7页
针对非协作通信环境中,自动调制识别(automatic modulation recognition,AMR)在低信噪比下泛化能力有限、分类精度不高的问题,提出一种由卷积神经网络、门控循环单元和深度神经网络组成的模型—CGDNN(convolutional gated recurrent uni... 针对非协作通信环境中,自动调制识别(automatic modulation recognition,AMR)在低信噪比下泛化能力有限、分类精度不高的问题,提出一种由卷积神经网络、门控循环单元和深度神经网络组成的模型—CGDNN(convolutional gated recurrent units deep neural networks)。首先对I/Q采样信号进行小波阈值去噪,降低噪声对信号调制识别的影响;然后用CNN和GRU提取信号空间和时间特征;最后,通过全连接层进行识别分类。与其他模型对比,验证CGDNN模型在提高AMR性能的同时,显著降低了计算复杂度。实验结果显示,CGDNN模型在RML2016.10b数据集上的平均识别准确率达到了64.32%,提高了-12 dB~0 dB的信号分类精度,该模型大幅减少了16QAM与64QAM的混淆程度,在18 dB时达到了93.9%的最高识别准确率。CGDNN模型既提高了低信噪比下AMR的识别准确率,也提高了模型训练的效率。 展开更多
关键词 自动调制识别 小波阈值去噪 卷积神经网络 门控循环单元 深度神经网络
在线阅读 下载PDF
基于CNN-GRU深度学习的模块化多电平矩阵变换器故障诊断 被引量:1
11
作者 朱晋 程启明 程尹曼 《南方电网技术》 CSCD 北大核心 2024年第11期13-22,共10页
模块化多电平矩阵变换器(modular multilevel matrix converter,M3C)是一种用于海上风力发电的低频电力传输AC-AC变换器。为了提高M3C工作的可靠性和稳定性,对其子模块中IGBT(insulated gate bipolar transistor)的开路故障需要有高效... 模块化多电平矩阵变换器(modular multilevel matrix converter,M3C)是一种用于海上风力发电的低频电力传输AC-AC变换器。为了提高M3C工作的可靠性和稳定性,对其子模块中IGBT(insulated gate bipolar transistor)的开路故障需要有高效准确的诊断方法,为此提出了基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated loop unit,GRU)相结合的深度学习故障诊断方法。在对M3C子模块运行工况分析基础上对原始故障数据进行小波包分析,并通过时序图像转换将其中高频分量转化为二维故障图片作为深度学习的训练及验证数据集,经过CNN对高维数据的特征提取,再通过GRU对数据进行优化训练,实现了对M3C故障类别的诊断识别。所提方法相比传统方法具有更加准确、快速的故障诊断能力。 展开更多
关键词 模块化多电平矩阵变换器 小波包分析 卷积神经网络 门控循环单元 故障诊断
在线阅读 下载PDF
具有预设性能的板球系统神经超扭曲滑模控制
12
作者 夏国锋 向凤红 《重庆大学学报》 CAS CSCD 北大核心 2024年第7期98-109,共12页
提出了一种新的具有预设性能的自回归小波神经网络(self-recurrent wavelet neural network,SRWNN)超扭曲非奇异快速终端滑模(super-twistingnon-singularfastterminalsliding mode,STNFTSM)控制方法(SRWNN_STNFTSM),在动力学不确定性... 提出了一种新的具有预设性能的自回归小波神经网络(self-recurrent wavelet neural network,SRWNN)超扭曲非奇异快速终端滑模(super-twistingnon-singularfastterminalsliding mode,STNFTSM)控制方法(SRWNN_STNFTSM),在动力学不确定性和未知扰动的情况下提高板球系统的跟踪控制性能。利用预设性能函数(prescribed performance function,PPF),将板球系统受约束的位置误差转换为无约束的误差模型。引入非奇异快速终端滑模(non-singular fast terminal sliding mode, NFTSM)面来消除常规终端滑模控制存在的奇异问题,并加入一个tanh函数的补偿项改进NFTSM滑模面,以调节轨迹跟踪的收敛速度和跟踪精度,同时结合超扭曲算法(super-twisting algorithm,STA)设计STNFTSM控制器,以削弱抖振和集总扰动的影响。针对系统存在的集总扰动,为了保证高跟踪精度,结合STNFTSM设计了自适应SRWNN补偿器来消除扰动,保证了鲁棒性。与现有常规滑模控制相比,仿真验证表明SRWNN_STNFTSM具有良好的跟踪性能和鲁棒性,能够对集总扰动下的板球系统进行准确跟踪。 展开更多
关键词 板球系统 预设性能控制 自回归小波神经网络 非奇异快速终端滑模 超扭曲算法
在线阅读 下载PDF
基于递归小波神经网络的非线性动态系统仿真 被引量:14
13
作者 赵凤遥 马震岳 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第7期1453-1455,1539,共4页
为提高动态递归神经网络的动态系统仿真能力,在Elman神经网络的基础上,提出动态递归小波神经网络(RWNN),给出了其动态梯度下降算法,并将其成功应用于非线性动态系统仿真。仿真算例表明,该网络具有收敛快,精度高等优点,仿真效果很好,同... 为提高动态递归神经网络的动态系统仿真能力,在Elman神经网络的基础上,提出动态递归小波神经网络(RWNN),给出了其动态梯度下降算法,并将其成功应用于非线性动态系统仿真。仿真算例表明,该网络具有收敛快,精度高等优点,仿真效果很好,同时具有较好的泛化性能,具有广阔的应用前景。 展开更多
关键词 ELMAN神经网络 递归小波神经网络(rwnn) 梯度下降算法 非线性动态系统 仿真
在线阅读 下载PDF
一种自适应模糊小波神经网络及其在交流伺服控制中的应用 被引量:7
14
作者 侯润民 刘荣忠 +2 位作者 高强 王力 邓桐彬 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期781-788,共8页
针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRW... 针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。 展开更多
关键词 兵器科学与技术 大功率交流伺服系统 自回归小波神经网络 模糊小波神经网络间接自适应控制器 模糊小波神经网络
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
15
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于小波变换并结合神经网络的癫痫发作预报 被引量:4
16
作者 林相波 邱天爽 +1 位作者 李小兵 王静 《中国生物医学工程学报》 CAS CSCD 北大核心 2005年第5期535-540,共6页
采用信号处理的方法分析脑电图以实现自动预报癫痫发作是该领域一个难题,至今进展不够显著。本研究将小波变换用于脑电信号的预处理,并与递归神经网络RNN相结合预测癫痫发作。通过比较三种不同的预处理方法,发现在小波变换域利用脑电信... 采用信号处理的方法分析脑电图以实现自动预报癫痫发作是该领域一个难题,至今进展不够显著。本研究将小波变换用于脑电信号的预处理,并与递归神经网络RNN相结合预测癫痫发作。通过比较三种不同的预处理方法,发现在小波变换域利用脑电信号α节律的能量谱可以实现发作预报,而进一步提取包络并作非线性变换可以有效地提高RNN的预报性能。 展开更多
关键词 癫痫 EEG 递归神经网络 小波变换
在线阅读 下载PDF
基于新型小波神经网络的电力故障回放技术 被引量:7
17
作者 杜新伟 刘涤尘 李媛 《电力系统自动化》 EI CSCD 北大核心 2007年第15期84-88,共5页
在已有小波神经网络研究的基础上,从小波库中抽取最优小波包基作为神经元激励函数,并由时频逼近原理确定网络结构和结点个数;采用速度跟踪粒子群优化训练网络权值,克服了传统学习算法收敛速度慢和易陷入局部极小的缺陷。介绍了该网络的... 在已有小波神经网络研究的基础上,从小波库中抽取最优小波包基作为神经元激励函数,并由时频逼近原理确定网络结构和结点个数;采用速度跟踪粒子群优化训练网络权值,克服了传统学习算法收敛速度慢和易陷入局部极小的缺陷。介绍了该网络的结构设计和参数训练方法,利用仿真实验证明其能够精确和快速地逼近非线性系统,并将该网络应用于电力故障回放装置中功率放大部分的系统辨识,建立装置的输入输出模型,根据模型输出和理想放大值确定修正值表,对故障录波数据在数字域内修正后再投入装置进行故障回放测试,有效解决了回放波形的非线性失真。 展开更多
关键词 故障回放 小波神经网络 小波包基 粒子群优化 速度跟踪
在线阅读 下载PDF
基于递归神经网络的网络流量组合预测模型 被引量:9
18
作者 刘渊 姚萌 《计算机工程与设计》 CSCD 北大核心 2008年第3期700-702,共3页
为了提高网络流量的预测精度,提出了一种基于Elman递归神经网络、小波和自回归的网络流量组合预测模型。对流量时间序列进行小波分解,得到小波变换尺度系数序列和小波系数序列,对具有平稳特征的尺度系数序列用AR模型进行预测;而对体现... 为了提高网络流量的预测精度,提出了一种基于Elman递归神经网络、小波和自回归的网络流量组合预测模型。对流量时间序列进行小波分解,得到小波变换尺度系数序列和小波系数序列,对具有平稳特征的尺度系数序列用AR模型进行预测;而对体现了网络流量非线性、非平稳特性的小波系数序列使用Elman递归神经网络进行预测,最后通过Mallat算法重构得到网络流量的预测值。 展开更多
关键词 网络流量 递归神经网络 小波变换 自回归 组合模型 预测
在线阅读 下载PDF
一类递归小波神经网络的稳定性研究 被引量:4
19
作者 邓韧 李著信 樊友洪 《应用数学和力学》 CSCD 北大核心 2007年第4期428-432,共5页
在小波神经网络(WNNs)和递归神经网络(RNNs)的基础上,提出了一类递归小波神经网络(RWNNs)模型,它具有两种网络模型的优点.根据Liapunov渐近稳定理论,对该模型的渐近稳定性进行了研究,并给出了相关的定理和公式.仿真结果表明该模型对非... 在小波神经网络(WNNs)和递归神经网络(RNNs)的基础上,提出了一类递归小波神经网络(RWNNs)模型,它具有两种网络模型的优点.根据Liapunov渐近稳定理论,对该模型的渐近稳定性进行了研究,并给出了相关的定理和公式.仿真结果表明该模型对非线性动态系统有良好的辨识效果. 展开更多
关键词 递归小波神经网络 渐近稳定性 非线性系统 Liapmmv函数
在线阅读 下载PDF
基于递归小波神经网络的江苏城镇夏季最高气温预报预警技术 被引量:7
20
作者 樊仲欣 陈旭红 谭桂容 《自然灾害学报》 CSCD 北大核心 2019年第6期56-69,共14页
针对目前数值天气预报产品释用方法上所存在的释用因子固化,无法应对特殊转折性天气的问题,应用一种基于动态因子检验的递归小波神经网络(Recurrent Wavelet Neural Network,RWNN)对江苏城镇夏季最高气温进行释用。该方法可以自动选取... 针对目前数值天气预报产品释用方法上所存在的释用因子固化,无法应对特殊转折性天气的问题,应用一种基于动态因子检验的递归小波神经网络(Recurrent Wavelet Neural Network,RWNN)对江苏城镇夏季最高气温进行释用。该方法可以自动选取气象要素且无需建立回归方程,具有泛用性好、灵活性高的特点。使用该方法基于T639的2017-2018年6-8月资料建立了江苏省南京、徐州、射阳、常州、苏州5地的最高气温预报预警模型。实验结果表明:南京、徐州、射阳3地模型的TT2和HSS35评分较反向传播神经网络方法分别平均提高了9个百分点和0.15,同时较卡尔曼滤波方法分别平均提高了17个百分点和0.2。 展开更多
关键词 地面气温 夏季最高气温 数值预报产品释用 动态因子检验 递归小波神经网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部