期刊文献+
共找到201篇文章
< 1 2 11 >
每页显示 20 50 100
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
1
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 fuzzy control Identification (control systems) inference engines Learning algorithms Mathematical models Multivariable control systems neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
Uncertain information fusion with robust adaptive neural networks-fuzzy reasoning 被引量:2
2
作者 Zhang Yinan Sun Qingwei +2 位作者 Quan He Jin Yonggao Quan Taifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期495-501,共7页
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ... In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm. 展开更多
关键词 uncertain information information fusion neural networks fuzzy inference robust estimate.
在线阅读 下载PDF
Study of Synthesis Identification in Cutting Process with Fuzzy Neural Network
3
作者 LIN Bin, YU Si-yuan, ZHU Hong-tao, ZHU Meng-zhou, LIN Meng-xia (The State Education Ministry Key Laboratory of High Temperature Structure Ceramics and Machining Technology of Engineering Ceramics, Tianjin University, Tianjin 300072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期40-41,共2页
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ... With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process. 展开更多
关键词 artificial neural network synthesis identification fuzzy inference on-line monitoring acoustics-vibra signal
在线阅读 下载PDF
The study of fuzzy chaotic neural network based on chaotic method
4
作者 WANG Ke-jun TANG Mo ZHANG Yan 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期64-70,共7页
关键词 模糊混沌神经网络 数理逻辑图 递归模糊神经网络 混沌方法
在线阅读 下载PDF
基于模糊推理和Jordan神经网络的磁悬浮球位置补偿控制研究
5
作者 李孝茹 陈士松 黄之文 《上海理工大学学报》 北大核心 2025年第3期299-308,共10页
针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制... 针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制框架。基础控制模块采用适应性强的PID控制器;JNN控制模块实现磁悬浮球系统的在线辨识与补偿;FI模块动态调整神经网络控制器的输出,以抑制欠训练JNN带来的不确定性影响。实验结果表明,与传统神经网络补偿控制方法相比,在跟踪阶跃信号和方波信号时,超调量分别减小了39.79%和60.61%,调节时间分别减小了19.52%和48.47%。该方法在保证稳态精度的同时,显著提升了控制系统的动态性能。 展开更多
关键词 模糊推理 Jordan神经网络 位置补偿控制 磁悬浮球
在线阅读 下载PDF
生活垃圾焚烧智能控制方法研究 被引量:1
6
作者 丁海霞 李爱民 刘传群 《大连理工大学学报》 北大核心 2025年第3期235-242,共8页
焚烧因其减容、减量及能源回收利用等优势而成为生活垃圾主要处理技术.为了解决生活垃圾焚烧过程控制中多个运行操作参数调节困难的问题,利用机器学习(ML)对垃圾焚烧过程中的运行操作参数和控制变量进行高精度非线性映射,达到根据控制... 焚烧因其减容、减量及能源回收利用等优势而成为生活垃圾主要处理技术.为了解决生活垃圾焚烧过程控制中多个运行操作参数调节困难的问题,利用机器学习(ML)对垃圾焚烧过程中的运行操作参数和控制变量进行高精度非线性映射,达到根据控制变量要求来自动定量调节运行操作参数的目的.采用神经网络和模糊推理系统算法来构建拟合控制模型,基于Aspen Plus垃圾焚烧模拟数据的训练和验证,得出的最优模型为SC-ANFIS,此模型对垃圾进料量、空气供给量、氨水投加量和氢氧化钙溶液投加量预测结果的决定系数(R^(2))分别为0.8322、0.9965、0.9957和0.9994,平均绝对百分比误差(MAPE)分别为2.1330%、0.6835%、1.8782%和0.6400%.因此,该模型可应用于生活垃圾焚烧过程控制,提高垃圾焚烧控制精度及自动化程度. 展开更多
关键词 生活垃圾焚烧 神经网络 模糊推理系统 自动控制
在线阅读 下载PDF
基于机器学习的雅砻江流域洪水预报研究
7
作者 何彦锋 许涵冰 +3 位作者 刘洁 周研来 陈华 郭生练 《水电能源科学》 北大核心 2025年第5期15-20,共6页
雅砻江干流水力资源丰富,流域内已形成梯级水库格局,开展流域梯级水库洪水预报对实现精细化水库调度、洪水资源高效利用具有重要意义。采用自适应模糊推理系统(ANFIS)、长短期记忆神经网络(LSTM)和时域卷积网络(TCN)建立洪水预报模型。... 雅砻江干流水力资源丰富,流域内已形成梯级水库格局,开展流域梯级水库洪水预报对实现精细化水库调度、洪水资源高效利用具有重要意义。采用自适应模糊推理系统(ANFIS)、长短期记忆神经网络(LSTM)和时域卷积网络(TCN)建立洪水预报模型。研究结果表明,相较ANFIS,TCN的纳什效率系数改善率最高为17.47%(二滩,t+12),LSTM的纳什效率系数改善率最高为15.44%(桐子林,t+12)。TCN和LSTM对两河口水库入库洪水预报整体上能达到甲等精度。与ANFIS和LSTM相比,TCN在洪峰误差和峰现时差方面表现最优,有效克服了时滞和误差累计的影响,显著降低了系统误差。结果表明,构建的TCN模型能够提高洪水预报准确性和可靠性。 展开更多
关键词 雅砻江流域 洪水预报 自适应模糊推理系统 长短期记忆神经网络 时域卷积网络
在线阅读 下载PDF
基于BIM的高速铁路设计概算智能预测方法研究
8
作者 段晓晨 高梦婉 +2 位作者 孟阳 孟春成 赵辰光 《铁道运输与经济》 北大核心 2024年第8期136-143,共8页
针对现行高速铁路定额预测存在的固定性、滞后性和预测方法的二维、线性等问题,在分析设计概算和影响因素之间的非线性、不确定性等演变趋势和机理基础上,以已完工程项目的历史数据为基础,构建类似已完工程设计概算历史数据库。为提高... 针对现行高速铁路定额预测存在的固定性、滞后性和预测方法的二维、线性等问题,在分析设计概算和影响因素之间的非线性、不确定性等演变趋势和机理基础上,以已完工程项目的历史数据为基础,构建类似已完工程设计概算历史数据库。为提高智能预测的精确度,采用余弦相似度方法在数据库中筛选相似案例,对拟建高速铁路项目进行类似度分类,采用非线性反向传播神经网络、模糊C均值聚类、模糊推理等方法集成优化组合,构建高速铁路拟建工程设计概算智能预测模型和BIM三维可视化模型。研究结果表明,建立设计概算非线性集成方法预测模型,实现不同量级数据下预测方法的优势互补,保证预测精度;通过BIM技术建立的三维可视化模型,有效提升设计概算预测的智能化水平与可视化效果。 展开更多
关键词 高速铁路 设计概算 反向传播神经网络 模糊C均值聚类 模糊推理 BIM 预测
在线阅读 下载PDF
一种用于非线性动态辨识的新型神经网络
9
作者 张剑 林瑞昌 毕天昊 《控制工程》 CSCD 北大核心 2024年第8期1383-1391,共9页
为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加... 为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加了模糊推论与一个递归通道。为验证SCRFNN在系统辨识中的有效性,设计一个新的NDSI在线学习模型与代码设计流程图,并以此作为在线学习架构,将以上3个神经网络模型对4个串-并型非线性动态系统进行辨识分析。经过仿真表明,新提出的SCRFNN通过存储内部状态,具备了映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。且在模糊规则数、学习收敛速度、学习与预测误差均方根值、预测精准度方面也取得了良好的效果。 展开更多
关键词 自建递归型模糊神经网络 自建型模糊神经网络 多层神经元神经网络 非线性动态系统辨识
在线阅读 下载PDF
特征扩展的随机向量函数链神经网络
10
作者 龙茂森 王士同 《软件学报》 EI CSCD 北大核心 2024年第6期2903-2922,共20页
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的... 基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度,从而对其可解释性造成了不利影响.对此,提出一种兼顾分类性能和可解释性的模糊神经网络,将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN).在该网络中,一个以原始数据为输入的RVFLNN被作为主体结构,BL-DFIS则用作性能补充,这意味着FA-RVFLNN包含具有性能增强作用的直接链接.由于主体结构的增强节点使用Sigmoid激活函数,因此,其推理过程可借助一种模糊逻辑算子(I-OR)来解释.而且,具有明确含义的原始输入数据也有助于解释主体结构的推理规则.在直接链接的支撑下,FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息.实验表明:FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题,也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右),在泛化性能和网络规模上仍具有竞争力. 展开更多
关键词 宽度学习系统 模糊推理系统 特征扩展 随机向量函数链神经网络(RVFLNN) Sigmoid激活函数 可解释
在线阅读 下载PDF
气象要素在电力负荷预测中的应用 被引量:25
11
作者 罗慧 巢清尘 +2 位作者 李奇 刘安麟 顾润源 《气象》 CSCD 北大核心 2005年第6期15-18,共4页
综合应用人工神经网络、模糊理论等智能技术,着重考虑天气因素对电力负荷的影响,确定了一种有效的电力系统短期负荷预测方法。并应用陕西省9个地市1998~2001年的逐日8个气象要素以及对应的逐日电力负荷值,对陕西省电力负荷进行训练和预... 综合应用人工神经网络、模糊理论等智能技术,着重考虑天气因素对电力负荷的影响,确定了一种有效的电力系统短期负荷预测方法。并应用陕西省9个地市1998~2001年的逐日8个气象要素以及对应的逐日电力负荷值,对陕西省电力负荷进行训练和预测,研究结果证明这种方法能较大地提高日负荷预测的精度。 展开更多
关键词 气象要素 电力负荷预测 1998-2001年 短期负荷预测方法 人工神经网络 日负荷预测 综合应用 智能技术 模糊理论 天气因素 电力系统 研究结果 陕西省 大地
在线阅读 下载PDF
基于T-S模型的自适应神经模糊推理系统及其在热工过程建模中的应用 被引量:24
12
作者 于希宁 程锋章 +1 位作者 朱丽玲 王毅佳 《中国电机工程学报》 EI CSCD 北大核心 2006年第15期78-82,共5页
在工业热工过程控制中,被控对象动态特性往往表现出非线性、时变性、大迟延和大惯性等特点,这使得难以对其建立比较精确的模型,从而难于精确表达热工过程及实施整体优化控制。针对热工过程建模难的现状,为达到建立精确非线性模型的目的... 在工业热工过程控制中,被控对象动态特性往往表现出非线性、时变性、大迟延和大惯性等特点,这使得难以对其建立比较精确的模型,从而难于精确表达热工过程及实施整体优化控制。针对热工过程建模难的现状,为达到建立精确非线性模型的目的,提出1种基于T-S模型的自适应神经模糊系统(ANFIS)模糊建模方法。该方法通过对模糊系统的结构辨识和参数辨识,使神经模糊网络能够自主、迅速有效地收敛到要求的输入和输出关系,从而达到精确建模的目的。仿真结果验证了所提出的算法的有效性,将其应用到热工过程建模中可获得高精度的非线性模型。 展开更多
关键词 热工过程 自适应神经模糊推理系统 模糊建模 神经网络 非线性
在线阅读 下载PDF
应用自适应神经模糊推理系统(ANFIS)的ET_0预测 被引量:18
13
作者 蔡甲冰 刘钰 +1 位作者 雷廷武 许迪 《农业工程学报》 EI CAS CSCD 北大核心 2004年第4期13-16,共4页
参照作物腾发量是计算作物需水量和进行灌溉预报的基础要素。该文利用自适应神经模糊推理系统(ANFIS)所具有的直接通过模糊推理实现输入层与输出层之间非线性映射能力,和神经网络的信息存储和学习能力,将其应用于参照作物腾发量预测中... 参照作物腾发量是计算作物需水量和进行灌溉预报的基础要素。该文利用自适应神经模糊推理系统(ANFIS)所具有的直接通过模糊推理实现输入层与输出层之间非线性映射能力,和神经网络的信息存储和学习能力,将其应用于参照作物腾发量预测中。根据相关分析,输入变量选择日照时数和日最高气温;用5年共1827个数据组对系统进行训练,建立了参照作物腾发量预测系统。利用该系统对近年213个数据组进行了实际预测,与Penman-Monteith方法计算结果进行比较,结果相关性良好。 展开更多
关键词 ET0 预测 ANFIS 模糊推理 神经网络
在线阅读 下载PDF
基于神经模糊Petri网的高压断路器故障诊断研究 被引量:27
14
作者 程学珍 朱晓林 +2 位作者 杜彦镔 王程 曹茂永 《电工技术学报》 EI CSCD 北大核心 2018年第11期2535-2544,共10页
为提高高压断路器运行的稳定性,该文借助Petri网的强大的知识表达和逻辑推理功能对高压断路器的状态进行评估和诊断。根据断路器的物理逻辑关系,构建了基于神经模糊Petri网的高压断路器故障诊断模型;采用失效模式与效应分析(FMEA)法对... 为提高高压断路器运行的稳定性,该文借助Petri网的强大的知识表达和逻辑推理功能对高压断路器的状态进行评估和诊断。根据断路器的物理逻辑关系,构建了基于神经模糊Petri网的高压断路器故障诊断模型;采用失效模式与效应分析(FMEA)法对故障统计数据进行处理,求取库所置信度、变迁阈值、库所权值、规则可信度;优化正向推理算法,实现对高压断路器故障的准确预测;逆向推理结合最小割集可有效避免检修的盲目性。最后,以部分模型为例,进行推理分析,并通过故障树和统计数据来验证推理模型的正确性和合理性。 展开更多
关键词 神经模糊Petri网 高压断路器 故障诊断 矩阵推理 神经网络算法
在线阅读 下载PDF
基于递归模糊神经网络的感应电机无速度传感器矢量控制 被引量:53
15
作者 王耀南 王辉 +1 位作者 邱四海 黄守道 《中国电机工程学报》 EI CSCD 北大核心 2004年第5期84-89,共6页
该文提出了一种控制性能较好的递归模糊神经网络(RFNN)无速度传感器感应电机矢量控制方法,该方法使用模型参考自适应方法辨识转子磁场位置和转速,采用递归模糊神经网络控制器作为转矩控制器来近似系统最优控制器输出。仿真实验表明,当... 该文提出了一种控制性能较好的递归模糊神经网络(RFNN)无速度传感器感应电机矢量控制方法,该方法使用模型参考自适应方法辨识转子磁场位置和转速,采用递归模糊神经网络控制器作为转矩控制器来近似系统最优控制器输出。仿真实验表明,当系统参数动态变化或受到外部不确定性因素的影响时,利用神经网络来在线动态的调整网络的隶属函数参数以及神经网络递归权值,使系统仍将具有很好的动静态性能。 展开更多
关键词 感应电机 无速度传感器 矢量控制 递归模糊神经网络 隶属函数 最优控制器
在线阅读 下载PDF
一种模糊神经网络的快速参数学习算法 被引量:21
16
作者 陈非 敬忠良 姚晓东 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第4期583-587,共5页
提出了一种新的模糊神经网络的快速参数学习算法 ,采用一些特殊的处理 ,可以用递推最小二乘法 (RLS)来调整所有的参数 .以前的学习算法在调整模糊隶属度函数的中心和宽度的时候 ,用的是梯度下降法 ,具有容易陷入局部最小值点、收敛速度... 提出了一种新的模糊神经网络的快速参数学习算法 ,采用一些特殊的处理 ,可以用递推最小二乘法 (RLS)来调整所有的参数 .以前的学习算法在调整模糊隶属度函数的中心和宽度的时候 ,用的是梯度下降法 ,具有容易陷入局部最小值点、收敛速度慢等缺点 ,而本算法则可以克服这些缺点 ,最后通过仿真验证了算法的有效性 . 展开更多
关键词 模糊神经网络 快速参数学习算法 T-S模糊推理系统 多层前向神经网络 改进RLS算法
在线阅读 下载PDF
模糊神经网络和遗传算法结合的船舶火灾探测 被引量:15
17
作者 王锡淮 肖健梅 鲍敏中 《仪器仪表学报》 EI CAS CSCD 北大核心 2001年第3期312-314,共3页
本文提出了一种模糊推理系统、神经网络和遗传算法相结合的船舶火灾探测算法。该方法用神经网络来构造模糊推理系统 ,通过遗传算法对神经网络进行训练来实现船舶火灾的分级报警。
关键词 模糊推理 神经网络 遗传算法 火灾探测 船舶
在线阅读 下载PDF
减法聚类-ANFIS在网络故障诊断的应用研究 被引量:14
18
作者 蒋静芝 孟相如 +1 位作者 李欢 庄绪春 《计算机工程与应用》 CSCD 北大核心 2011年第8期76-78,86,共4页
提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-AN... 提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-ANFIS的建模方法是有效的;通过仿真结果比较,减法聚类-ANFIS的网络故障诊断能力及收敛速度均优于BP神经网络,更适合作为网络故障诊断模型。 展开更多
关键词 网络故障诊断 减法聚类 自适应模糊神经网络 模糊逻辑 神经网络
在线阅读 下载PDF
基于自适应神经-模糊推理系统和遗传算法的桥梁耐久性评估 被引量:23
19
作者 杨则英 黄承逵 曲建波 《土木工程学报》 EI CSCD 北大核心 2006年第2期16-20,共5页
将模糊推理、神经网络、遗传算法三种技术有机融合在一起,建立了基于自适应神经-模糊推理系统(ANFIS)和遗传算法(GAS)的桥梁耐久性评估专家系统。该系统将专家的模糊推理过程蕴含于神经网络结构中,使神经网络的节点和权值具有明确的物... 将模糊推理、神经网络、遗传算法三种技术有机融合在一起,建立了基于自适应神经-模糊推理系统(ANFIS)和遗传算法(GAS)的桥梁耐久性评估专家系统。该系统将专家的模糊推理过程蕴含于神经网络结构中,使神经网络的节点和权值具有明确的物理意义,避免了传统神经网络工作过程的“黑盒”性。同时该系统又具有神经网络的自适应性和学习能力,克服了传统模糊推理系统学习能力差的缺点。而且采用遗传和反向传播相结合的GA-BP混合算法训练网络,充分发挥了遗传算法的全局搜索性和BP的局部微调快速性的优点。并以辽宁省13座桥300根梁的实测数据对其进行训练和测试,系统输出与期望输出吻合较好,证明该专家系统性能稳定、有效,具有实用价值。 展开更多
关键词 桥梁 耐久性评估 模糊推理 神经网络 遗传算法 专家系统
在线阅读 下载PDF
基于神经模糊控制理论的数控机床热误差建模 被引量:11
20
作者 余治民 刘子建 +1 位作者 艾彦迪 熊敏 《中国机械工程》 EI CAS CSCD 北大核心 2014年第16期2225-2231,共7页
将基于神经模糊控制理论的建模方法——模糊神经网络建模法应用到数控机床热误差建模当中,讨论了热误差模糊神经网络的结构及建模原理;对大型数控龙门导轨磨床主轴箱系统进行建模试验,采用非接触式红外温度测量仪和千分表分别测量主轴... 将基于神经模糊控制理论的建模方法——模糊神经网络建模法应用到数控机床热误差建模当中,讨论了热误差模糊神经网络的结构及建模原理;对大型数控龙门导轨磨床主轴箱系统进行建模试验,采用非接触式红外温度测量仪和千分表分别测量主轴箱系统温度值与主轴热误差,得到两组独立的试验数据,一组用来建立主轴箱系统热误差模糊神经网络预报模型,另一组用来对模型进行验证。试验结果表明,模糊神经网络模型预测精度高,泛化能力强;将模糊神经网络建模方法与径向基函数神经网络建模方法进行综合对比,分析结果表明,模糊神经网络建模方法具有更好的建模效率、建模鲁棒性及预测性能。 展开更多
关键词 Takagi-Sugeno型模糊推理 隶属度函数 模糊神经网络 鲁棒性 泛化能力
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部