To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the consi...To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF.展开更多
Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study propo...Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.展开更多
China is extremely poor in mineral resources of Platinum Group Metals (PGMs), productive output of PGMs from mineral resource is 2.5 tons per year. At the same time, China is the biggest PGMs consumption country in th...China is extremely poor in mineral resources of Platinum Group Metals (PGMs), productive output of PGMs from mineral resource is 2.5 tons per year. At the same time, China is the biggest PGMs consumption country in the world, the mineral resource of PGMs is critical shortage, it shows the importance of recycling the secondary resource of PGMs. Sino-Platinum Metals Resource (Yimen) Co., Ltd. is the leader in recycling of PGMs from secondary resource, and has made outstanding contributions to China PGMs secondary resources recycling. This article elucidates the current situation of secondary resources recovery and development of metallurgical technology for PGMs.展开更多
To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leach...To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.展开更多
According to the statistic analysis,the reserve of manganese in electrolytic manganese residue deposit is over 780 kt. The average contents of available manganese and ammonium reach 3.90% and 1.68% (mass fraction),res...According to the statistic analysis,the reserve of manganese in electrolytic manganese residue deposit is over 780 kt. The average contents of available manganese and ammonium reach 3.90% and 1.68% (mass fraction),respectively. Large amount of manganese compounds and ammonium sulfate are detruded without any treatment or recovery. The compositions of the main elements in electrolytic manganese residue were analyzed comprehensively based on the extensive research data. According to the new development of electrolytic manganese residue comprehensively used in recent years,a water washing residue-twice precipitation process was also proposed. The experimental results indicate that manganese dioxide silicon dioxide and calcium sulfate are presented as amorphous state in the manganese residues. The recovery rates of manganese and nitrogen reach up to 99.5% and 94.5 %,respectively. The recovery process can be easily implemented,environment-friendly and fitting for industrial production.展开更多
This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antim...This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it.展开更多
The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neu...The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.展开更多
With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a ...With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.展开更多
To recover metal from copper slags,a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste(waste cathode carbon)was used to treat another...To recover metal from copper slags,a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste(waste cathode carbon)was used to treat another(copper slags).The waste cathode carbon is used not only as a reducing agent but also as a fluxing agent to decrease slag melting point.Upon holding for 60 min in air atmosphere first and then smelting with 14.4 wt%waste cathode carbon and 25 wt%CaO for 180 min in high purity Ar atmosphere at 1450℃,the recovery rates of Cu and Fe reach 95.89%and 94.64%,respectively,and meanwhile greater than 90%of the fluoride from waste cathode carbon is transferred into the final slag as CaF_(2) and Ca_(2)Si_(2)F_(2)O_(7),which makes the content of soluble F in the slag meet the national emission standard.Besides,the sulphur content in the obtained Fe-Cu alloy is low to 0.03 wt%.展开更多
The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ str...The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ stress state recovery according to the full-life cycle evolution characteristics of surrounding rocks in deep mines(pre-excavation,excavation and post-excavation). The time-dependent stress-strain curves of sandstone were obtained. Meanwhile, the deformation and strength fitting relationships with time of sandstone were also built. Furthermore, the dilatancy and volumetric recovery mechanical mechanisms of sandstone were revealed. The results showed that: 1) There were significant time-dependent evolution characteristics on the deformation and strength of sandstone;2) There were significant correlations among the internal friction angle, cohesion and the simulated depths;3) Volumetric recovery phenomenon of sandstone was observed for the first time, which mainly occurred at the simulated depth of 2000 m. The above research conclusions could provide a certain theoretical basis for the stability control of surrounding rocks in deep mines.展开更多
The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu ...The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60℃ for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 ℃. The direct recovery rate of copper sulfate is 79.11% and the content of CuSOa·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.展开更多
The present study aims at the recovery of potassium from muscovite mica(which contains K_(2)O;~10 wt%)using NaCl-roasting coupled with H_(2)SO_(4)-leaching process.The preliminary acid leaching studies applying differ...The present study aims at the recovery of potassium from muscovite mica(which contains K_(2)O;~10 wt%)using NaCl-roasting coupled with H_(2)SO_(4)-leaching process.The preliminary acid leaching studies applying different mineral acids resulted in a potassium recovery of 8%−18%.The optimum leaching conditions for the maximum recovery were 4 mol/L H_(2)SO_(4),60 min leaching time and liquid-solid ratio 4 mL/g at 90℃.However,the roasting of muscovite with additive NaCl(muscovite:NaCl mass ratio of 1:1.00,900℃,45 min)followed by H_(2)SO_(4)-leaching(95℃,60 min)extracted potassium to the tune of 98%.Under similar roasting conditions,the H_(2)O-leaching process extracted only 60%of potassium.The effects of various roasting and leaching parameters such as temperature,time,NaCl concentration,acid concentration,liquid-solid ratio on potassium extraction were evaluated.The appearance of the sylvite(KCl)mineral phase in the NaCl-roasted muscovite and its disappearance in the acid/water leached residue confirmed the physical and chemical distortions of the muscovite crystal structure.The possible mechanism of potassium release from the complex muscovite structure was elucidated based on available literature substantiated by characterizations using X-ray diffraction(XRD)and scanning electron microscopy with energy dispersive X-rays spectroscopy(SEM-EDX).展开更多
The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantag...The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantages against the conventional recovery procedures. This paper presents a review of the advances in microwave technology applied to the recovery of precious metals from the secondary resources. Many different applications are considered, including microwave-assisted leaching, microwave augmented ashing and microwave pyrolysis. In general, microwave enhanced recovery of precious metals from secondary resources.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issue...Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issues in hydrometallurgical cut-off grades determination. Slags are remarked as one of the main sources of copper. It is not only regarded as a waste but also identified as another resource extracting base metals. Slags are characterized by copper high grade. Thus, slag copper recovery can be led to different cut-off grades and net present value(NPV). The current research scrutinizes the effect of slag recovery by both flotation and hydrometallurgical methods on the hydrometallurgical cut-off grades. For this purpose, the optimum cut-off grade algorithms of hydrometallurgical methods are developed by considering associated environmental parameters, incomes and also the costs. Then, their optimum amounts are calculated with NPV maximization as an objective function. The results indicate that considering slag copper recovery in the hydrometallurgical cut-off grade algorithms reduces the environmental costs caused by slag dumping and leads to more NPV by 9%.展开更多
Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Parti...Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Particularly, network component importance is addressed to express its significance in shaping the resilience performance of the whole system. Due to the intrinsic complexity of the problem, some idealized assumptions are exerted on the resilience-optimization problem to find partial solutions. This paper seeks to exploit the dynamic aspect of system resilience, i.e., the scheduling problem of link recovery in the post-disruption phase.The aim is to analyze the recovery strategy of the system with more practical assumptions, especially inhomogeneous time cost among links. In view of this, the presented work translates the resilience-maximization recovery plan into the dynamic decisionmaking of runtime recovery option. A heuristic scheme is devised to treat the core problem of link selection in an ongoing style.Through Monte Carlo simulation, the link recovery order rendered by the proposed scheme demonstrates excellent resilience performance as well as accommodation with uncertainty caused by epistemic knowledge.展开更多
A beneficiation-metallurgy combination process is developed to recover Zn, Fe and to enrich In, Ag from high iron-bearing zinc calcine based on our former researches. In gaseous reductive roasting process, the roastin...A beneficiation-metallurgy combination process is developed to recover Zn, Fe and to enrich In, Ag from high iron-bearing zinc calcine based on our former researches. In gaseous reductive roasting process, the roasting conditions were tested by magnetic separation of roasted product. It is found that the V_(CO)(P_(CO)/(P_(CO+CO_2)) in roasting atmosphere should be maintained below 30% to avoid the generation of zinc iron solid solution(Fe_(0.85-x)Zn_xO), which can bring a decrease of iron recovery in magnetic separation. After roasting, acid leaching and multistage magnetic separation are carried out for the recovery of Zn, Fe and enrichment of Ag and In. About 90% of zinc is extracted and 83% of iron is recovered in the whole process. The Ag mainly enters the tailings with a recovery of 76%, the Ag grade increases from 0.12 g/t in raw materials to 1.18 g/t in the tailings. However, the In mainly enters the iron concentrations and the recovery reaches 86%. This process was proved to be technically feasible and may be a favorable option in the treatment of high iron-bearing zinc material with high Ag or In content.展开更多
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms accordin...In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.展开更多
After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy ...After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.展开更多
基金Project(52204164) supported by the National Natural Science Foundation of ChinaProject(2023ZKPYSB01) supported by the Fundamental Research Funds for the Central Universities,China。
文摘To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF.
基金Project(2018YFC1900305)supported by the National Key R&D Program of ChinaProject(51825403)supported by the National Science Foundation for Distinguished Young Scholars,China+1 种基金Projects(51634010,51474247,51904354)supported by the National Natural Science Foundation of ChinaProject(2019SK2291)supported by the Key Research and Development Program of Hunan Province,China。
文摘Zinc leaching residue(ZLR) contains high content of valuable metals such as zinc and iron. However, zinc and iron mainly exist in the form of zinc ferrite, which are difficult to separate and recover. This study proposed a new process involving sulfidation roasting, magnetic separation and flotation to recover zinc and iron in ZLR. Through sulfidation roasting of ZLR with pyrite, zinc and iron were converted into ZnS and Fe3 O4. The effects of pyrite dosage, roasting temperature and roasting time on the sulfidation of zinc in ZLR were investigated. The results showed that the sulfidation percentage of zinc reached 91.8% under the optimum condition. Besides, it was found that ball-milling was favorable for the separation and recovery of zinc and iron in sulfidation products. After ball-milling pretreatment, iron and zinc were enriched from sulfidation products by magnetic separation and flotation. The grade of iron in magnetic concentrates was 52.3% and the grade of zinc in flotation concentrates was 31.7%, which realized the recovery of resources.
基金the National High Technology Research and Development Program of China(863 Program) (2012AA063203)Funded by Science and Technology Department of Yunnan Province (2011AA004)
文摘China is extremely poor in mineral resources of Platinum Group Metals (PGMs), productive output of PGMs from mineral resource is 2.5 tons per year. At the same time, China is the biggest PGMs consumption country in the world, the mineral resource of PGMs is critical shortage, it shows the importance of recycling the secondary resource of PGMs. Sino-Platinum Metals Resource (Yimen) Co., Ltd. is the leader in recycling of PGMs from secondary resource, and has made outstanding contributions to China PGMs secondary resources recycling. This article elucidates the current situation of secondary resources recovery and development of metallurgical technology for PGMs.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research Project,ChinaProject(2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn(Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.
基金Project(2008AA031202) supported by the National High Technology Research and Development Program of ChinaProject(0992007-6) supported by Major Science & Technology of Guangxi ProvinceProject(CSTC2008AB7127) supported by Major Science & Technology of Chongqing
文摘According to the statistic analysis,the reserve of manganese in electrolytic manganese residue deposit is over 780 kt. The average contents of available manganese and ammonium reach 3.90% and 1.68% (mass fraction),respectively. Large amount of manganese compounds and ammonium sulfate are detruded without any treatment or recovery. The compositions of the main elements in electrolytic manganese residue were analyzed comprehensively based on the extensive research data. According to the new development of electrolytic manganese residue comprehensively used in recent years,a water washing residue-twice precipitation process was also proposed. The experimental results indicate that manganese dioxide silicon dioxide and calcium sulfate are presented as amorphous state in the manganese residues. The recovery rates of manganese and nitrogen reach up to 99.5% and 94.5 %,respectively. The recovery process can be easily implemented,environment-friendly and fitting for industrial production.
基金Project(51564034)supported by the National Science Fund for Distinguished Regional Scholars,China
文摘This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it.
基金Project(2006DFB72570) supported by the Grand Project of International Cooperation of Ministry of Science and Technology of China
文摘The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.
基金supported by the National Natural Science Foundation of China(60972145)the National Aerospace Science Foundation of China(20140751008)
文摘With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.
基金Project(U1602272)supported by the National Natural Science Foundation of China。
文摘To recover metal from copper slags,a new process involving two steps of oxidative desulfurization followed by smelting reduction was proposed in which one hazardous waste(waste cathode carbon)was used to treat another(copper slags).The waste cathode carbon is used not only as a reducing agent but also as a fluxing agent to decrease slag melting point.Upon holding for 60 min in air atmosphere first and then smelting with 14.4 wt%waste cathode carbon and 25 wt%CaO for 180 min in high purity Ar atmosphere at 1450℃,the recovery rates of Cu and Fe reach 95.89%and 94.64%,respectively,and meanwhile greater than 90%of the fluoride from waste cathode carbon is transferred into the final slag as CaF_(2) and Ca_(2)Si_(2)F_(2)O_(7),which makes the content of soluble F in the slag meet the national emission standard.Besides,the sulphur content in the obtained Fe-Cu alloy is low to 0.03 wt%.
基金Projects(52034009, 51974319) supported by the National Natural Science Foundation of ChinaProject(2020JCB01) supported by the Yue Qi Distinguished Scholar Project of China。
文摘The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ stress state recovery according to the full-life cycle evolution characteristics of surrounding rocks in deep mines(pre-excavation,excavation and post-excavation). The time-dependent stress-strain curves of sandstone were obtained. Meanwhile, the deformation and strength fitting relationships with time of sandstone were also built. Furthermore, the dilatancy and volumetric recovery mechanical mechanisms of sandstone were revealed. The results showed that: 1) There were significant time-dependent evolution characteristics on the deformation and strength of sandstone;2) There were significant correlations among the internal friction angle, cohesion and the simulated depths;3) Volumetric recovery phenomenon of sandstone was observed for the first time, which mainly occurred at the simulated depth of 2000 m. The above research conclusions could provide a certain theoretical basis for the stability control of surrounding rocks in deep mines.
文摘The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60℃ for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 ℃. The direct recovery rate of copper sulfate is 79.11% and the content of CuSOa·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.
文摘The present study aims at the recovery of potassium from muscovite mica(which contains K_(2)O;~10 wt%)using NaCl-roasting coupled with H_(2)SO_(4)-leaching process.The preliminary acid leaching studies applying different mineral acids resulted in a potassium recovery of 8%−18%.The optimum leaching conditions for the maximum recovery were 4 mol/L H_(2)SO_(4),60 min leaching time and liquid-solid ratio 4 mL/g at 90℃.However,the roasting of muscovite with additive NaCl(muscovite:NaCl mass ratio of 1:1.00,900℃,45 min)followed by H_(2)SO_(4)-leaching(95℃,60 min)extracted potassium to the tune of 98%.Under similar roasting conditions,the H_(2)O-leaching process extracted only 60%of potassium.The effects of various roasting and leaching parameters such as temperature,time,NaCl concentration,acid concentration,liquid-solid ratio on potassium extraction were evaluated.The appearance of the sylvite(KCl)mineral phase in the NaCl-roasted muscovite and its disappearance in the acid/water leached residue confirmed the physical and chemical distortions of the muscovite crystal structure.The possible mechanism of potassium release from the complex muscovite structure was elucidated based on available literature substantiated by characterizations using X-ray diffraction(XRD)and scanning electron microscopy with energy dispersive X-rays spectroscopy(SEM-EDX).
文摘The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantages against the conventional recovery procedures. This paper presents a review of the advances in microwave technology applied to the recovery of precious metals from the secondary resources. Many different applications are considered, including microwave-assisted leaching, microwave augmented ashing and microwave pyrolysis. In general, microwave enhanced recovery of precious metals from secondary resources.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
文摘Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issues in hydrometallurgical cut-off grades determination. Slags are remarked as one of the main sources of copper. It is not only regarded as a waste but also identified as another resource extracting base metals. Slags are characterized by copper high grade. Thus, slag copper recovery can be led to different cut-off grades and net present value(NPV). The current research scrutinizes the effect of slag recovery by both flotation and hydrometallurgical methods on the hydrometallurgical cut-off grades. For this purpose, the optimum cut-off grade algorithms of hydrometallurgical methods are developed by considering associated environmental parameters, incomes and also the costs. Then, their optimum amounts are calculated with NPV maximization as an objective function. The results indicate that considering slag copper recovery in the hydrometallurgical cut-off grade algorithms reduces the environmental costs caused by slag dumping and leads to more NPV by 9%.
基金supported by the National Natural Science Foundation of China(51479158)the Fundamental Research Funds for the Central Universities(WUT:2018III061GX)
文摘Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Particularly, network component importance is addressed to express its significance in shaping the resilience performance of the whole system. Due to the intrinsic complexity of the problem, some idealized assumptions are exerted on the resilience-optimization problem to find partial solutions. This paper seeks to exploit the dynamic aspect of system resilience, i.e., the scheduling problem of link recovery in the post-disruption phase.The aim is to analyze the recovery strategy of the system with more practical assumptions, especially inhomogeneous time cost among links. In view of this, the presented work translates the resilience-maximization recovery plan into the dynamic decisionmaking of runtime recovery option. A heuristic scheme is devised to treat the core problem of link selection in an ongoing style.Through Monte Carlo simulation, the link recovery order rendered by the proposed scheme demonstrates excellent resilience performance as well as accommodation with uncertainty caused by epistemic knowledge.
基金Project(2014FJ1011)supported by the Major Science and Technology Project of Hunan Province,ChinaProject(51574295)supported by the National Natural Science Foundation of China
文摘A beneficiation-metallurgy combination process is developed to recover Zn, Fe and to enrich In, Ag from high iron-bearing zinc calcine based on our former researches. In gaseous reductive roasting process, the roasting conditions were tested by magnetic separation of roasted product. It is found that the V_(CO)(P_(CO)/(P_(CO+CO_2)) in roasting atmosphere should be maintained below 30% to avoid the generation of zinc iron solid solution(Fe_(0.85-x)Zn_xO), which can bring a decrease of iron recovery in magnetic separation. After roasting, acid leaching and multistage magnetic separation are carried out for the recovery of Zn, Fe and enrichment of Ag and In. About 90% of zinc is extracted and 83% of iron is recovered in the whole process. The Ag mainly enters the tailings with a recovery of 76%, the Ag grade increases from 0.12 g/t in raw materials to 1.18 g/t in the tailings. However, the In mainly enters the iron concentrations and the recovery reaches 86%. This process was proved to be technically feasible and may be a favorable option in the treatment of high iron-bearing zinc material with high Ag or In content.
基金supported by the National Natural Science Foundation of China(61201134)the 111 Project(B08038)
文摘In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.
基金Project(2013BAF07B02)supported by National Science and Technology Support Program of China
文摘After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.