In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position inf...In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.展开更多
For conveniently calculating the radiated electric field of transverse electromagnetic(TEM) horn antenna,an approximate simplified analytical calculation method is suggested.This method divides the horn to a system of...For conveniently calculating the radiated electric field of transverse electromagnetic(TEM) horn antenna,an approximate simplified analytical calculation method is suggested.This method divides the horn to a system of V-antennas and superimposes the fields of all V-antennas to obtain the field of the TEM horn.The method is compared with the traditional analytical method and numerical method.The obtained results suggest that the proposed method is valid,simple and that it can fastly calculate the radiated electric field of the TEM horn antenna in an arbitrary space with an arbitrary excitation voltage.Based on this method,radiation of the TEM horn antenna of a high-altitude electromagnetic pulse(HEMP) simulator is simulated.Rise time,pulse width,peak value of electric field,and field distribution are analyzed.Results show that the TEM horn antenna can be used in HEMP simulators: the near field waveform is closer to the standard waveform than to the far field waveform; the standards for the rise time and the peak value of electric field are easily satisfied; the pulse width of the radiated field can be increased by broadening the pulse width of an excitation source and by making the antenna of a proper展开更多
基金Projects(40804027,41074085) supported by the National Natural Science Foundation of ChinaProject(09JJ3048) supported by the Natural Science Foundation of Hunan Province,ChinaProject(200805331082) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
基金Project supported by National Natural Science Foundation of China(51177174).
文摘For conveniently calculating the radiated electric field of transverse electromagnetic(TEM) horn antenna,an approximate simplified analytical calculation method is suggested.This method divides the horn to a system of V-antennas and superimposes the fields of all V-antennas to obtain the field of the TEM horn.The method is compared with the traditional analytical method and numerical method.The obtained results suggest that the proposed method is valid,simple and that it can fastly calculate the radiated electric field of the TEM horn antenna in an arbitrary space with an arbitrary excitation voltage.Based on this method,radiation of the TEM horn antenna of a high-altitude electromagnetic pulse(HEMP) simulator is simulated.Rise time,pulse width,peak value of electric field,and field distribution are analyzed.Results show that the TEM horn antenna can be used in HEMP simulators: the near field waveform is closer to the standard waveform than to the far field waveform; the standards for the rise time and the peak value of electric field are easily satisfied; the pulse width of the radiated field can be increased by broadening the pulse width of an excitation source and by making the antenna of a proper