This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the at...This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.展开更多
To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weap...To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.展开更多
Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experimen...Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.展开更多
A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect...A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.展开更多
Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exp...Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exploratory evaluation(UEEE),is proposed to guide the evaluation activities,which can iteratively and gradually reduce uncertainty in evaluation results.Uncertainty entropy(UE)is proposed to measure the extent of uncertainty.First,the belief degree distributions are assumed to characterize the uncertainty in attributes.Then the belief degree distribution of the evaluation result can be calculated by using uncertainty theory.The obtained result is then checked based on UE to see if it could meet the requirements of decision-making.If its uncertainty level is high,more information needs to be introduced to reduce uncertainty.An algorithm based on the UE is proposed to find which attribute can mostly affect the uncertainty in results.Thus,efforts can be invested in key attribute(s),and the evaluation results can be updated accordingly.This update should be repeated until the evaluation result meets the requirements.Finally,as a case study,the effectiveness of ballistic missiles with uncertain attributes is evaluated by UEEE.The evaluation results show that the target is believed to be destroyed.展开更多
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl...As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient ...With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient mission consideration and single evaluation dimension in the existing evaluation approaches,this study proposes a mission-oriented capability evaluation method for combat systems based on operation loop.Firstly,a combat network model is given that takes into account the capability properties of combat nodes.Then,based on the transition matrix between combat nodes,an efficient algorithm for operation loop identification is proposed based on the Breadth-First Search.Given the mission-capability satisfaction of nodes,the effectiveness evaluation indexes for operation loops and combat network are proposed,followed by node importance measure.Through a case study of the combat scenario involving space-based support against surface ships under different strategies,the effectiveness of the proposed method is verified.The results indicated that the ROI-priority attack method has a notable impact on reducing the overall efficiency of the network,whereas the O-L betweenness-priority attack is more effective in obstructing the successful execution of enemy attack missions.展开更多
To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroy...To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.展开更多
The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the huma...The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the human visual mechanism.In order to make the evaluation method more computationally intelligent,a Multi-Feature Camouflage Fused Index(MF-CFI)is proposed based on the comparison of grayscale,color and texture features between the target and the background.In order to verify the effectiveness of the proposed index,eye movement experiments are conducted to compare the proposed index with existing indexes including Universal Image Quality Index(UIQI),Camouflage Similarity Index(CSI)and Structural Similarity(SSIM).Twenty-four different simulated targets are designed in a grassland background,28 observers participate in the experiment and record the eye movement data during the observation process.The results show that the highest Pearson correlation coefficient is observed between MF-CFI and the eye movement data,both in the designed digital camouflage patterns and largespot camouflage patterns.Since MF-CFI is more in line with the detection law of camouflage targets in human visual perception,the proposed index can be used for the comparison and parameter optimization of camouflage design algorithms.展开更多
A systematic research on a modified method that was developed to evaluate the effectiveness of volatile corrosion inhibitor(VCI) materials was carried out. The metal specimen in size of 50mm×25mm×2mm was lev...A systematic research on a modified method that was developed to evaluate the effectiveness of volatile corrosion inhibitor(VCI) materials was carried out. The metal specimen in size of 50mm×25mm×2mm was level mounted on the top of a beaker by transparent adhesive tape and the assembly was placed in a constant temperature water bath and kept at approximately 40℃ to accelerate the vaporization of VCI and distilled water, which was placed at the bottom of the beaker at the same time. The experimental results show that the reproducibility of rust appearance and corrosion rate calculated by specimen’s mass loss is perfect. The outstanding characteristic of the rust appearance based on different VCI formula is discovered that is very important in studying the mechanism of VCI and the synergism of chemical reagent. The accelerated ratio is increased greatly as compared with the traditional method and the value is approximately 15 as compared with Shijiazhuang atmospheric environment corrosion test. The modified method is suitable for formula screening test and quick effectiveness evaluation of VCI materials.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
This paper introduces a nuclear calamity evaluation expert system which is applied to comprehensive evaluation of damage effects of nuclear calamities. It contains hardware environment, overall structure, logical step...This paper introduces a nuclear calamity evaluation expert system which is applied to comprehensive evaluation of damage effects of nuclear calamities. It contains hardware environment, overall structure, logical steps and reasoning models, concerning the expert system.展开更多
As one of the provinces of highest economic growth in coastal China,Zhejiang Province is experiencing serious geological disasters during the past development of economy.The main kinds of geo-hazards include landslide...As one of the provinces of highest economic growth in coastal China,Zhejiang Province is experiencing serious geological disasters during the past development of economy.The main kinds of geo-hazards include landslides,rock falls and debris-flows in Zhejiang Province,which are mainly induced by intensive rainfall during typhoon season or by long-term rainfall from May to June every year.Thus,展开更多
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c...Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.展开更多
It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The ...It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The safety mass concentrations of four raw materials were screened by detecting cell viability,and the secretion of hyaluronic acid(HA)was determined using the ELISA method.The expression of HaCaT barrier function related genes(OVOL1,EREG,TGM1,TGM2,IVL,IRF6,THBS1,CASP14)was detected at the mRNA level to explore the regulatory effect of four raw materials on these genes.The results demonstrate that pretreatment with the four kinds of raw materials could increase the cell viability after hyperosmotic dehydration,promote the secretion of HA,and improve the expression of barrier function related genes after hyperosmotic dehydration,among which panthenol and Calendula officinalis L.are better.The results show that the four raw materials have a certain protective effect on the hyperosmotic dehydration cell model,which provides data support for its application in cosmetics.展开更多
基金the National Natural Science Foundation of China(Grant No.42174047 and No.42174036)the National Science Foundation Project for Outstanding Youth(No.42104034).
文摘This paper realizes the full-domain collaborative deployment of multiple interference sources of the global satellite navigation system(GNSS)and evaluates the deployment effect to enhance the ability to disturb the attacker and the capability to defend the GNSS during navigation countermeasures.Key evaluation indicators for the jamming effect of GNSS suppressive and deceptive jamming sources are first created,their evaluation models are built,and their detection procedures are sorted out,as the basis for determining the deployment principles.The principles for collaboratively deploying multi-jamming sources are developed to obtain the deployment structures(including the required number,structures in demand,and corresponding positions)of three single interference sources required by collaboratively deploying.Accordingly,simulation and hardware-in-loop testing results are presented to determine a rational configuration of the collaborative deployment of multi-jamming sources in the set situation and further realize the full-domain deployment of an interference network from ground,air to space.Varied evaluation indices for the deployment effect are finally developed to evaluate the deployment effect of the proposed configuration and further verify its reliability and rationality.
文摘To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.
文摘Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.
文摘A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.
基金the National Natural Science Foundation of China(61872378).
文摘Some attributes are uncertain for evaluation work because of incomplete or limited information and knowledge.It leads to uncertainty in evaluation results.To that end,an evaluation method,uncertainty entropy-based exploratory evaluation(UEEE),is proposed to guide the evaluation activities,which can iteratively and gradually reduce uncertainty in evaluation results.Uncertainty entropy(UE)is proposed to measure the extent of uncertainty.First,the belief degree distributions are assumed to characterize the uncertainty in attributes.Then the belief degree distribution of the evaluation result can be calculated by using uncertainty theory.The obtained result is then checked based on UE to see if it could meet the requirements of decision-making.If its uncertainty level is high,more information needs to be introduced to reduce uncertainty.An algorithm based on the UE is proposed to find which attribute can mostly affect the uncertainty in results.Thus,efforts can be invested in key attribute(s),and the evaluation results can be updated accordingly.This update should be repeated until the evaluation result meets the requirements.Finally,as a case study,the effectiveness of ballistic missiles with uncertain attributes is evaluated by UEEE.The evaluation results show that the target is believed to be destroyed.
基金the National Defense Science and Technology Key Laboratory Fund of China(XM2020XT1023).
文摘As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
文摘With continuous growth in scale,topology complexity,mission phases,and mission diversity,challenges have been placed for efficient capability evaluation of modern combat systems.Aiming at the problems of insufficient mission consideration and single evaluation dimension in the existing evaluation approaches,this study proposes a mission-oriented capability evaluation method for combat systems based on operation loop.Firstly,a combat network model is given that takes into account the capability properties of combat nodes.Then,based on the transition matrix between combat nodes,an efficient algorithm for operation loop identification is proposed based on the Breadth-First Search.Given the mission-capability satisfaction of nodes,the effectiveness evaluation indexes for operation loops and combat network are proposed,followed by node importance measure.Through a case study of the combat scenario involving space-based support against surface ships under different strategies,the effectiveness of the proposed method is verified.The results indicated that the ROI-priority attack method has a notable impact on reducing the overall efficiency of the network,whereas the O-L betweenness-priority attack is more effective in obstructing the successful execution of enemy attack missions.
基金supported by the National Natural Science Foundation of China (60774064)the Aerospace Science Foundation (05D53022)the Youth for NPU Teachers Scientific and Technological Innovation Foundation (W016210)
文摘To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.
基金Natural Science Foundation of Jiangsu Province&Key Laboratory Foundation,grant number is BK20180579&6142206180204 respectively.
文摘The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the human visual mechanism.In order to make the evaluation method more computationally intelligent,a Multi-Feature Camouflage Fused Index(MF-CFI)is proposed based on the comparison of grayscale,color and texture features between the target and the background.In order to verify the effectiveness of the proposed index,eye movement experiments are conducted to compare the proposed index with existing indexes including Universal Image Quality Index(UIQI),Camouflage Similarity Index(CSI)and Structural Similarity(SSIM).Twenty-four different simulated targets are designed in a grassland background,28 observers participate in the experiment and record the eye movement data during the observation process.The results show that the highest Pearson correlation coefficient is observed between MF-CFI and the eye movement data,both in the designed digital camouflage patterns and largespot camouflage patterns.Since MF-CFI is more in line with the detection law of camouflage targets in human visual perception,the proposed index can be used for the comparison and parameter optimization of camouflage design algorithms.
文摘A systematic research on a modified method that was developed to evaluate the effectiveness of volatile corrosion inhibitor(VCI) materials was carried out. The metal specimen in size of 50mm×25mm×2mm was level mounted on the top of a beaker by transparent adhesive tape and the assembly was placed in a constant temperature water bath and kept at approximately 40℃ to accelerate the vaporization of VCI and distilled water, which was placed at the bottom of the beaker at the same time. The experimental results show that the reproducibility of rust appearance and corrosion rate calculated by specimen’s mass loss is perfect. The outstanding characteristic of the rust appearance based on different VCI formula is discovered that is very important in studying the mechanism of VCI and the synergism of chemical reagent. The accelerated ratio is increased greatly as compared with the traditional method and the value is approximately 15 as compared with Shijiazhuang atmospheric environment corrosion test. The modified method is suitable for formula screening test and quick effectiveness evaluation of VCI materials.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.
文摘This paper introduces a nuclear calamity evaluation expert system which is applied to comprehensive evaluation of damage effects of nuclear calamities. It contains hardware environment, overall structure, logical steps and reasoning models, concerning the expert system.
文摘As one of the provinces of highest economic growth in coastal China,Zhejiang Province is experiencing serious geological disasters during the past development of economy.The main kinds of geo-hazards include landslides,rock falls and debris-flows in Zhejiang Province,which are mainly induced by intensive rainfall during typhoon season or by long-term rainfall from May to June every year.Thus,
基金sponsored by the National Defense Science and Technology Key Laboratory Fund(Grant No.61422062205)the Equipment Pre-Research Fund(Grant No.JCKYS2022LD9)。
文摘Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.
文摘It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The safety mass concentrations of four raw materials were screened by detecting cell viability,and the secretion of hyaluronic acid(HA)was determined using the ELISA method.The expression of HaCaT barrier function related genes(OVOL1,EREG,TGM1,TGM2,IVL,IRF6,THBS1,CASP14)was detected at the mRNA level to explore the regulatory effect of four raw materials on these genes.The results demonstrate that pretreatment with the four kinds of raw materials could increase the cell viability after hyperosmotic dehydration,promote the secretion of HA,and improve the expression of barrier function related genes after hyperosmotic dehydration,among which panthenol and Calendula officinalis L.are better.The results show that the four raw materials have a certain protective effect on the hyperosmotic dehydration cell model,which provides data support for its application in cosmetics.