[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems...Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive act...Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions.展开更多
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w...Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u...A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.展开更多
In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the con...In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.展开更多
应用SYBR Green I染料能选择性结合双链DNA的特点,可检测到沙门氏菌fimI基因特异性靶序列扩增所产生的荧光信号,通过熔解曲线可知其熔点值约为85.6℃,而对其他非沙门氏菌则检测不到荧光信号。建立了一种肉品中的沙门氏菌Real-time PCR...应用SYBR Green I染料能选择性结合双链DNA的特点,可检测到沙门氏菌fimI基因特异性靶序列扩增所产生的荧光信号,通过熔解曲线可知其熔点值约为85.6℃,而对其他非沙门氏菌则检测不到荧光信号。建立了一种肉品中的沙门氏菌Real-time PCR检测方法,用该方法检测市售牛肉、香肠中的沙门氏菌,其检测灵敏度分别为13,12 cfu/25 g,从样品的处理到得出检验结果可以在10 h内完成。该检测方法具有简便、快速、特异性强、敏感度高等特点。展开更多
目的建立快速、特异性好、灵敏度高的Real-Time PCR方法定量检测沙门菌。方法根据编码沙门菌肠毒素基因stn的核苷酸序列,设计荧光探针和一对引物,通过对荧光定量PCR反应体系和反应条件的摸索,建立定量检测沙门菌的方法。结果建立的Real-...目的建立快速、特异性好、灵敏度高的Real-Time PCR方法定量检测沙门菌。方法根据编码沙门菌肠毒素基因stn的核苷酸序列,设计荧光探针和一对引物,通过对荧光定量PCR反应体系和反应条件的摸索,建立定量检测沙门菌的方法。结果建立的Real-Ti me PCR方法有很好的特异性与敏感性,所检测沙门菌结果均为阳性,而非沙门菌均为阴性;标准曲线相关系数为R2=0.993,其敏感性为5CFU。运用该方法对108份鸡粪便、50份鸡肉以及58份水样进行检测,阳性率分别为3.7%(6/108)、4%(2/50)和3.4%(2/58),与传统细菌分离检测结果相符。结论结果表明该方法具有简便、快速、特异性强、敏感性高等特点,此研究为环境及疾病诊断中沙门菌快速检测提供了新方法。展开更多
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金supported by the National Natural Science Foundation of China(61571149,62001139)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F0178).
文摘Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
文摘Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions.
基金Project(42174170)supported by the National Natural Science Foundation of China。
文摘Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900603)the National Natural Science Foundation of China(61831008).
文摘A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.
文摘In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.
文摘目的建立快速、特异性好、灵敏度高的Real-Time PCR方法定量检测沙门菌。方法根据编码沙门菌肠毒素基因stn的核苷酸序列,设计荧光探针和一对引物,通过对荧光定量PCR反应体系和反应条件的摸索,建立定量检测沙门菌的方法。结果建立的Real-Ti me PCR方法有很好的特异性与敏感性,所检测沙门菌结果均为阳性,而非沙门菌均为阴性;标准曲线相关系数为R2=0.993,其敏感性为5CFU。运用该方法对108份鸡粪便、50份鸡肉以及58份水样进行检测,阳性率分别为3.7%(6/108)、4%(2/50)和3.4%(2/58),与传统细菌分离检测结果相符。结论结果表明该方法具有简便、快速、特异性强、敏感性高等特点,此研究为环境及疾病诊断中沙门菌快速检测提供了新方法。