Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the ...Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.展开更多
In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional ...In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.展开更多
固态变压器(solid state transformer,SST)在新型电力系统中的应用逐渐增加,因其复杂的拓扑结构、节点数多、子模块内开关频率高等特点,使得面向SST的电磁暂态仿真计算效率低,目前针对SST大步长仿真方法的研究较少。为此,提出一种基于...固态变压器(solid state transformer,SST)在新型电力系统中的应用逐渐增加,因其复杂的拓扑结构、节点数多、子模块内开关频率高等特点,使得面向SST的电磁暂态仿真计算效率低,目前针对SST大步长仿真方法的研究较少。为此,提出一种基于离散状态空间小步合成的SST大步长仿真方法。首先,建立小步长建模、小步长仿真的离散状态空间模型;然后,根据离散状态空间方程的特点,采用小步迭代合成法构建离散状态空间大步长仿真模型,从而实现小步长建模、大步长仿真;最后,给出大步长仿真模型的二次等效方法,减少系统整体建模的系数矩阵维度,降低计算复杂度。结果表明,所提方法不仅能减少数值积分误差和电力电子开关动作误差,实现100 k Hz开关频率下SST换流系统的精确仿真,还能显著提升SST的仿真效率。展开更多
为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩...为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩短了路径长度提升路径质量,改进剪枝策略减少了树搜索的冗余节点。根据算法在简单、复杂和密集环境下的仿真结果显示,在密集环境下A-RRT^(*)算法的无效冗余节点剪除94.29%、内存缩减了94.29%、搜索时间提高了96.28%、迭代次数缩减了91.49%、路径距离缩短了10.18%。为了防止生成的路径不平整而使机械臂在运行中造成损伤,利用了三次B样条对路径进行了优化,通过三维机械臂仿真也可得出优化后的路径更加平滑,减少了机械臂在运行过程中的关节波动,更有利于机械臂的运行,进一步验证了算法在机械臂运行中的有效性。展开更多
基金Sponsored by the Natural Science Foundation of Shaanxi Province (Grant No. S2025-JC-YB-0532)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (PF2024044)
文摘Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.
文摘In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.
文摘固态变压器(solid state transformer,SST)在新型电力系统中的应用逐渐增加,因其复杂的拓扑结构、节点数多、子模块内开关频率高等特点,使得面向SST的电磁暂态仿真计算效率低,目前针对SST大步长仿真方法的研究较少。为此,提出一种基于离散状态空间小步合成的SST大步长仿真方法。首先,建立小步长建模、小步长仿真的离散状态空间模型;然后,根据离散状态空间方程的特点,采用小步迭代合成法构建离散状态空间大步长仿真模型,从而实现小步长建模、大步长仿真;最后,给出大步长仿真模型的二次等效方法,减少系统整体建模的系数矩阵维度,降低计算复杂度。结果表明,所提方法不仅能减少数值积分误差和电力电子开关动作误差,实现100 k Hz开关频率下SST换流系统的精确仿真,还能显著提升SST的仿真效率。
文摘为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩短了路径长度提升路径质量,改进剪枝策略减少了树搜索的冗余节点。根据算法在简单、复杂和密集环境下的仿真结果显示,在密集环境下A-RRT^(*)算法的无效冗余节点剪除94.29%、内存缩减了94.29%、搜索时间提高了96.28%、迭代次数缩减了91.49%、路径距离缩短了10.18%。为了防止生成的路径不平整而使机械臂在运行中造成损伤,利用了三次B样条对路径进行了优化,通过三维机械臂仿真也可得出优化后的路径更加平滑,减少了机械臂在运行过程中的关节波动,更有利于机械臂的运行,进一步验证了算法在机械臂运行中的有效性。