根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的...根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。展开更多
针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PH...针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter,UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。展开更多
提出一种基于随机有限集的同步定位与地图创建算法,该算法利用随机有限集对环境地图和传感器观测信息建模,建立联合目标状态变量的随机有限集。依据Bayesian估计框架,利用概率假设密度滤波的粒子滤波实现对机器人位姿和环境地图进行同...提出一种基于随机有限集的同步定位与地图创建算法,该算法利用随机有限集对环境地图和传感器观测信息建模,建立联合目标状态变量的随机有限集。依据Bayesian估计框架,利用概率假设密度滤波的粒子滤波实现对机器人位姿和环境地图进行同时估计。新算法避免了数据关联过程,并能更加自然有效地表达同步定位与地图创建(simultaneous localization and mapping,SLAM)问题中多特征-多观测特性及多种传感器信息。在仿真实验中,利用FastSLAM2.0算法和新算法进行对比,实验结果验证了新算法的优越性。展开更多
文摘根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。
文摘针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter,UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。
文摘提出一种基于随机有限集的同步定位与地图创建算法,该算法利用随机有限集对环境地图和传感器观测信息建模,建立联合目标状态变量的随机有限集。依据Bayesian估计框架,利用概率假设密度滤波的粒子滤波实现对机器人位姿和环境地图进行同时估计。新算法避免了数据关联过程,并能更加自然有效地表达同步定位与地图创建(simultaneous localization and mapping,SLAM)问题中多特征-多观测特性及多种传感器信息。在仿真实验中,利用FastSLAM2.0算法和新算法进行对比,实验结果验证了新算法的优越性。