This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equiva...This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.展开更多
Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing sys...Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.展开更多
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter...In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10472091and10332030)
文摘Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.
基金Project supported by the Major Program of the National Natural Science Foundation of China, China (Grant No 10332030), the National Natural Science Foundation of China (Grant No 10472091), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655).
文摘In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.