The design and performance analysis of networked control systems with random network delay in the forward channel is proposed, which are described in a state-space form. A new control scheme is used to overcome the ef...The design and performance analysis of networked control systems with random network delay in the forward channel is proposed, which are described in a state-space form. A new control scheme is used to overcome the effects of network transmission delay, which is termed networked predictive control (NPC). Furthermore, three different ways to choose control input are discussed and the performances are analyzed, respectively. Both real-time simulations and practical experiments show the effectiveness of the control scheme.展开更多
The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced ...The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.展开更多
基金supported partly by the National Natural Science Foundation of China(60504020)the Program for New Century Excellent Talents in University(NCET-08-0047)the Excellent Young Scholars Research Fund of Beijing Institute of Technology(2008YS0104).
文摘The design and performance analysis of networked control systems with random network delay in the forward channel is proposed, which are described in a state-space form. A new control scheme is used to overcome the effects of network transmission delay, which is termed networked predictive control (NPC). Furthermore, three different ways to choose control input are discussed and the performances are analyzed, respectively. Both real-time simulations and practical experiments show the effectiveness of the control scheme.
基金supported by the NSFC-Guangdong Joint Foundation Key Project(U0735003)the Overseas Cooperation Foundation(60828006)+1 种基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities(2009ZM0076)the Natural Science Foundation of Guangdong Province(06105413)
文摘The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.