Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with dam...Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with damping layer.However,the traditional numerical methods suffer from the complex modelling and time-consuming problems.Therefore,a prediction model named the random forest regressor(RFR)is proposed based on 240 numerical simulation results of the mechanical response of tunnel lining.In addition,circle mapping(CM)is used to improve Archimedes optimization algorithm(AOA),reptile search algorithm(RSA),and Chernobyl disaster optimizer(CDO)to further improve the predictive performance of the RFR model.The performance evaluation results show that the CMRSA-RFR is the best prediction model.The damping layer thickness is the most important feature for predicting the maximum principal stress of tunnel lining containing damping layer.This study verifies the feasibility of combining numerical simulation with machine learning technology,and provides a new solution for predicting the mechanical response of aseismic tunnel with damping layer.展开更多
A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,wh...A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements.展开更多
The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE ...The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the pl...As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy’s attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation(FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85%of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.展开更多
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick...Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting.展开更多
The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which make...The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which makes it impossible to calculate the residual elastic energy index accurately.Based on 241 sets of experimental data and four input indexes of density,elastic modulus,peak intensity and peak input strain energy,this study proposed a machine learning model combining k-means clustering algorithm and random forest regression model:cluster forest(CF)model.The research employed a stratified sampling method on the dataset to ensure the representativeness and balance of the samples.Subsequently,grid search and five-fold cross-validation were utilized to optimize the model’s hyperparameters,aiming to enhance its generalization capability and prediction accuracy.Finally,the performance of the optimal model was evaluated using a test set and compared with five other commonly used models.The results indicate that the CF model outperformed the other models on the testing set,with a mean absolute error of 6.6%,and an accuracy of 93.9%.The results of sensitivity analyses reveal the degree of influence of each variable on rockburst proneness and the applicability of the CF model when the input parameters are missing.The robustness and generalization ability of the model were verified by introducing experimental data from other studies,and the results confirmed the reliability and applicability of the model.Therefore,the model not only effectively simplifies the acquisition of the residual elastic energy index,but also shows excellent performance and wide applicability.展开更多
The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly d...The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly determined by the expert with experience. This paper proposed a brand-new method to construct indicator systems based on the repeated simulation of the scenario space, and calculated by quantitative data. Firstly, the selection of key indicators using the Gini indicator importance measure(IIM)is calculated by random forests(RFs). Then, principal component analysis(PCA) is applied when we use the selected indicators to construct the composite indicator system of SoS. Furthermore,a set of rulesare is developed to verify the practicability of the indicator system such as correlation, robustness, accuracy and convergence. Experiment shows that the algorithm achieves good results for the construction of composite indicators of So S.展开更多
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c...In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved.展开更多
基金Project(2023YFB2390400)supported by the National Key R&D Programs for Young Scientists,ChinaProjects(U21A20159,52079133,52379112,52309123,41902288)supported by the National Natural Science Foundation of China+5 种基金Project(2024AFB041)supported by the Hubei Provincial Natural Science Foundation,ChinaProject(QTKS0034W23291)supported by the Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources,ChinaProject(2023SGG07)supported by the Visiting Researcher Fund Program of State Key Laboratory of Water Resources Engineering and Management,ChinaProject(2022KY56(ZDZX)-02)supported by the Key Research Program of FSDI,ChinaProject(SKS-2022103)supported by the Key Research Program of the Ministry of Water Resources,ChinaProject(202102AF080001)supported by the Yunnan Major Science and Technology Special Program,China。
文摘Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with damping layer.However,the traditional numerical methods suffer from the complex modelling and time-consuming problems.Therefore,a prediction model named the random forest regressor(RFR)is proposed based on 240 numerical simulation results of the mechanical response of tunnel lining.In addition,circle mapping(CM)is used to improve Archimedes optimization algorithm(AOA),reptile search algorithm(RSA),and Chernobyl disaster optimizer(CDO)to further improve the predictive performance of the RFR model.The performance evaluation results show that the CMRSA-RFR is the best prediction model.The damping layer thickness is the most important feature for predicting the maximum principal stress of tunnel lining containing damping layer.This study verifies the feasibility of combining numerical simulation with machine learning technology,and provides a new solution for predicting the mechanical response of aseismic tunnel with damping layer.
基金supported by National Natural Science Foundation of China(Grant No.12432018,12372346)the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.12221002).
文摘A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements.
基金Supported by Basic and Applied Basic Research Project of Guangdong Province(2021B0301030006)。
文摘The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.
文摘As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy’s attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation(FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85%of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.
基金Project(52204117)supported by the National Natural Science Foundation of ChinaProject(2022JJ40601)supported by the Natural Science Foundation of Hunan Province,China。
文摘Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting.
基金Project(42077244)supported by the National Natural Science Foundation of ChinaProject(SDGZK2431)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,Sichuan University,China。
文摘The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which makes it impossible to calculate the residual elastic energy index accurately.Based on 241 sets of experimental data and four input indexes of density,elastic modulus,peak intensity and peak input strain energy,this study proposed a machine learning model combining k-means clustering algorithm and random forest regression model:cluster forest(CF)model.The research employed a stratified sampling method on the dataset to ensure the representativeness and balance of the samples.Subsequently,grid search and five-fold cross-validation were utilized to optimize the model’s hyperparameters,aiming to enhance its generalization capability and prediction accuracy.Finally,the performance of the optimal model was evaluated using a test set and compared with five other commonly used models.The results indicate that the CF model outperformed the other models on the testing set,with a mean absolute error of 6.6%,and an accuracy of 93.9%.The results of sensitivity analyses reveal the degree of influence of each variable on rockburst proneness and the applicability of the CF model when the input parameters are missing.The robustness and generalization ability of the model were verified by introducing experimental data from other studies,and the results confirmed the reliability and applicability of the model.Therefore,the model not only effectively simplifies the acquisition of the residual elastic energy index,but also shows excellent performance and wide applicability.
基金supported by the Major Program of the National Natural Science Foundation of China(U1435218)National Natural Science Foundation of China(6140340171401168)
文摘The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly determined by the expert with experience. This paper proposed a brand-new method to construct indicator systems based on the repeated simulation of the scenario space, and calculated by quantitative data. Firstly, the selection of key indicators using the Gini indicator importance measure(IIM)is calculated by random forests(RFs). Then, principal component analysis(PCA) is applied when we use the selected indicators to construct the composite indicator system of SoS. Furthermore,a set of rulesare is developed to verify the practicability of the indicator system such as correlation, robustness, accuracy and convergence. Experiment shows that the algorithm achieves good results for the construction of composite indicators of So S.
文摘In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved.