Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emi...Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.展开更多
在分析服装企业原材料仓库管理业务过程的基础上,指出仓库管理存在盘点工作量巨大、库存数量不准确等问题,结合RFID(radio frequency identification)技术的高速移动物体识别、多目标和非接触识别、环境适应性好等特点,提出在服装企业...在分析服装企业原材料仓库管理业务过程的基础上,指出仓库管理存在盘点工作量巨大、库存数量不准确等问题,结合RFID(radio frequency identification)技术的高速移动物体识别、多目标和非接触识别、环境适应性好等特点,提出在服装企业原材料仓库实施RFID的应用方案。该应用方案由3个部分组成,描述应用系统信息需求的信息方案,说明如何使用标签的方法与过程的标签方案和结合具体业务过程的应用方案。该方案可以给服装企业构建RFID应用系统提供较高的参考价值。展开更多
在分析现有基于(EPC Class 1Gen,2EPCGen2)标准的轻量级RFID相互认证协议的基础上,提出了一种符合EPCGen2标准的基于射频指纹的RFID认证协议。协议融合了RFID设备的物理层信息,实现了RFID标签的跨层融合认证,具有增强RFID系统安全强度...在分析现有基于(EPC Class 1Gen,2EPCGen2)标准的轻量级RFID相互认证协议的基础上,提出了一种符合EPCGen2标准的基于射频指纹的RFID认证协议。协议融合了RFID设备的物理层信息,实现了RFID标签的跨层融合认证,具有增强RFID系统安全强度的特点。分析显示,提出协议具有相互认证、私密性、防止重放攻击、防止去同步攻击等安全性能,尤其能有效对抗RFID标签的克隆攻击。展开更多
基金supported by the National Natural Science Foundation of China(62061003)Sichuan Science and Technology Program(2021YFG0192)the Research Foundation of the Civil Aviation Flight University of China(ZJ2020-04,J2020-033)。
文摘Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.
文摘在分析服装企业原材料仓库管理业务过程的基础上,指出仓库管理存在盘点工作量巨大、库存数量不准确等问题,结合RFID(radio frequency identification)技术的高速移动物体识别、多目标和非接触识别、环境适应性好等特点,提出在服装企业原材料仓库实施RFID的应用方案。该应用方案由3个部分组成,描述应用系统信息需求的信息方案,说明如何使用标签的方法与过程的标签方案和结合具体业务过程的应用方案。该方案可以给服装企业构建RFID应用系统提供较高的参考价值。
文摘在分析现有基于(EPC Class 1Gen,2EPCGen2)标准的轻量级RFID相互认证协议的基础上,提出了一种符合EPCGen2标准的基于射频指纹的RFID认证协议。协议融合了RFID设备的物理层信息,实现了RFID标签的跨层融合认证,具有增强RFID系统安全强度的特点。分析显示,提出协议具有相互认证、私密性、防止重放攻击、防止去同步攻击等安全性能,尤其能有效对抗RFID标签的克隆攻击。