The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the ...The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.展开更多
径向基函数点插值无网格法(radial point interpolation method,RPIM)是一种新型的无网格法,其形函数具有插值特性,且形式简单,易于施加本质边界条件。文中介绍了径向基函数点插值无网格法的基本原理,推导了三维情况下点插值无网格法的...径向基函数点插值无网格法(radial point interpolation method,RPIM)是一种新型的无网格法,其形函数具有插值特性,且形式简单,易于施加本质边界条件。文中介绍了径向基函数点插值无网格法的基本原理,推导了三维情况下点插值无网格法的基本公式。从变分原理出发,结合比奥固结理论,建立了流-固耦合的三维点插值无网格法基本方程和数值积分方法,并开发了相应计算程序。通过三维悬臂梁和单向固结问题的数值试验,验证了该方法对三维弹性问题和流-固耦合问题的适用性和有效性。展开更多
基金supported by the Key Program of the National Natural Science Foundation of China (Grand No. 51138001)the China-German Cooperation Project (Grand No. GZ566)+1 种基金the Innovative Research Groups Funded by the National Natural Science Foundation of China (Grand No. 51121005)the Special Funds for the Basic Scientific Research Expenses for the Central University (Grant No. DUT13LK16)
文摘The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
基金supported by the Natural Science Foundation of China (10972075,10802029)the Hunan Provincial Natural Science Foundation of China(10JJ3036)Scientific Research Fund of Hunan Provincial Education Depart ment of China(08C230)~~
文摘径向基函数点插值无网格法(radial point interpolation method,RPIM)是一种新型的无网格法,其形函数具有插值特性,且形式简单,易于施加本质边界条件。文中介绍了径向基函数点插值无网格法的基本原理,推导了三维情况下点插值无网格法的基本公式。从变分原理出发,结合比奥固结理论,建立了流-固耦合的三维点插值无网格法基本方程和数值积分方法,并开发了相应计算程序。通过三维悬臂梁和单向固结问题的数值试验,验证了该方法对三维弹性问题和流-固耦合问题的适用性和有效性。