To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a comm...To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.展开更多
The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DA...The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.展开更多
To deal with the radio frequency threat posed by modern complex radar networks to aircraft,we researched the unmanned aerial vehicle(UAV)formations radar countermeasures,aiming at the solution of radar jamming resourc...To deal with the radio frequency threat posed by modern complex radar networks to aircraft,we researched the unmanned aerial vehicle(UAV)formations radar countermeasures,aiming at the solution of radar jamming resource allocation under system countermeasures.A jamming resource allocation method based on an improved firefly algorithm(FA)is proposed.Firstly,the comprehensive factors affecting the level of threat and interference efficiency of radiation source are quantified by a fuzzy comprehensive evaluation.Besides,the interference efficiency matrix and the objective function of the allocation model are determined to establish the interference resource allocation model.Finally,A mutation operator and an adaptive heuristic are integtated into the FA algorithm,which searches an interference resource allocation scheme.The simulation results show that the improved FA algorithm can compensate for the deficiencies of the FA algorithm.The improved FA algorithm provides a more scientific and reasonable decision-making plan for aircraft mission allocation and can effectively deal with the battlefield threats of the enemy radar network.Moreover,in terms of convergence accuracy and speed as well as algorithm stability,the improved FA algorithm is superior to the simulated annealing algorithm(SA),the niche genetic algorithm(NGA),the improved discrete cuckoo algorithm(IDCS),the mutant firefly algorithm(MFA),the cuckoo search and fireflies algorithm(CSFA),and the best neighbor firefly algorithm(BNFA).展开更多
基金Supported by the National Natural Science Foundation of China(60774064,61305133)the National Research Foundation for the Doctoral Program of Higher Education of China(20116102110026)+1 种基金the Aerospace Technology Support Foundation(2013-HT-XGD)the Aeronautical Science Foundation of China(2013zc53037)
文摘To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.
文摘The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.
文摘To deal with the radio frequency threat posed by modern complex radar networks to aircraft,we researched the unmanned aerial vehicle(UAV)formations radar countermeasures,aiming at the solution of radar jamming resource allocation under system countermeasures.A jamming resource allocation method based on an improved firefly algorithm(FA)is proposed.Firstly,the comprehensive factors affecting the level of threat and interference efficiency of radiation source are quantified by a fuzzy comprehensive evaluation.Besides,the interference efficiency matrix and the objective function of the allocation model are determined to establish the interference resource allocation model.Finally,A mutation operator and an adaptive heuristic are integtated into the FA algorithm,which searches an interference resource allocation scheme.The simulation results show that the improved FA algorithm can compensate for the deficiencies of the FA algorithm.The improved FA algorithm provides a more scientific and reasonable decision-making plan for aircraft mission allocation and can effectively deal with the battlefield threats of the enemy radar network.Moreover,in terms of convergence accuracy and speed as well as algorithm stability,the improved FA algorithm is superior to the simulated annealing algorithm(SA),the niche genetic algorithm(NGA),the improved discrete cuckoo algorithm(IDCS),the mutant firefly algorithm(MFA),the cuckoo search and fireflies algorithm(CSFA),and the best neighbor firefly algorithm(BNFA).