The problem whether every infinite dimensional Banach space has an infinite dimensional separable quotient space has remained unsolved for a long time. In this paper we prove: the Banach space X has an infinite dimens...The problem whether every infinite dimensional Banach space has an infinite dimensional separable quotient space has remained unsolved for a long time. In this paper we prove: the Banach space X has an infinite dimensional separable quotient if and only if X has an infinite dimensional separable quasicomplemented subspace, also if and only if there exists a Banach space Y and a bounded linear operator T is an element of B(Y,X such that the range of T is nonclosed and dense in X. Besides, the other relevant questions for such spaces e.g. the question on operator ideals that on H.I.(hereditarily indecomposable) spaces, that on invariant subspaces of operators, etc, are also discussed.展开更多
文摘The problem whether every infinite dimensional Banach space has an infinite dimensional separable quotient space has remained unsolved for a long time. In this paper we prove: the Banach space X has an infinite dimensional separable quotient if and only if X has an infinite dimensional separable quasicomplemented subspace, also if and only if there exists a Banach space Y and a bounded linear operator T is an element of B(Y,X such that the range of T is nonclosed and dense in X. Besides, the other relevant questions for such spaces e.g. the question on operator ideals that on H.I.(hereditarily indecomposable) spaces, that on invariant subspaces of operators, etc, are also discussed.